Description
在一款电脑游戏中,你需要打败n只怪物(从1到n编号)。为了打败第i只怪物,你需要消耗d[i]点生命值,但怪物死后会掉落血药,使你恢复a[i]点生命值。任何时候你的生命值都不能降到0(或0以下)。请问是否存在一种打怪顺序,使得你可以打完这n只怪物而不死掉
Input
第一行两个整数n,z(1<=n,z<=100000),分别表示怪物的数量和你的初始生命值。
接下来n行,每行两个整数d[i],a[i](0<=d[i],a[i]<=100000)
Output
第一行为TAK(是)或NIE(否),表示是否存在这样的顺序。
如果第一行为TAK,则第二行为空格隔开的1~n的排列,表示合法的顺序。如果答案有很多,你可以输出其中任意一个。
Sample Input
3 5
3 1
4 8
8 3
3 1
4 8
8 3
Sample Output
TAK
2 3 1
2 3 1
屯题中
贪心
先分类讨论。回血更多的的和扣血更多的分开
首先能回血的各种乱搞都可以
要扣血的要按回血从大到小排完再搞
原来认为要按一开始扣多少血从大到小排,因为把先打扣血少的血扣完就没有足够的血去打扣血多的了
然后发现反例:5滴血,一只扣3血回3血,一只扣4血回0……显然先打第一只
唉毕竟我太弱
#include<cstdio>
#include<algorithm>
#define N 100010
using namespace std;
struct monster{int lim,change,rnk;}a[N],b[N];
inline bool cmp1(const monster &a,const monster &b){return a.lim<b.lim;}
inline bool cmp2(const monster &a,const monster &b){return a.change>b.change;}
int x,y,n,len1,len2;
long long m;
int ans[N];
int main()
{
scanf("%d%lld",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
if (y>x){a[++len1].lim=x;a[len1].change=y;a[len1].rnk=i;}else
{b[++len2].lim=x;b[len2].change=y;b[len2].rnk=i;}
}
sort(a+1,a+len1+1,cmp1);
sort(b+1,b+len2+1,cmp2);
for (int i=1;i<=len1;i++)
{
if (m<=a[i].lim){printf("NIE\n");return 0;}
m+=a[i].change-a[i].lim;
ans[i]=a[i].rnk;
}
for (int i=1;i<=len2;i++)
{
if (m<=b[i].lim){printf("NIE\n");return 0;}
m+=b[i].change-b[i].lim;
ans[len1+i]=b[i].rnk;
}
printf("TAK\n");
for (int i=1;i<=n;i++)printf("%d ",ans[i]);
}