转自opencvChina
Opencv c接口与c++接口
Opencv 从c到c++
Opencv 从c到c++
Opencv2.0版本发布后,其新的C++接口,cv::Mat代替了原来c风格的CvMat和IplImage.目前,2.0版本对c的接口也是支持的。
相对于c的接口,c++的cv::Mat统一了矩阵和图像这两个概念。事实上,矩阵和图像其实是一样的。由于cv::Mat是c++的类,所以也具备了相关的一些特征。例如,内存的释放。在C++中,一个对象超出其使用范围后,会自动调用析构函数进行销毁。而在c中,如果给CvMat类型的变量使用函数cvCreateImage 等函数分配了内存空间,那么必须调用相应的函数进行释放,而不会自动销毁。如果没有相应的释放,则会造成内存泄漏。
cv::Mat的介绍
在使用c++接口前,先包含相应的opencv namespace
在使用#include语句包含相应头文件后,使用下面语句即可包含相应的opencv命名空间
using namespace cv;
如果没有这个语句,那么在这个命名空间的相关资源就需要带上cv前缀,如cv:Mat,表示的是使用命名空间cv中的Mat;
而有了using namespace cv这个语句后,就可以直接写Mat
这个新的类型Mat支持类似于matlab风格的矩阵代数运算,例如:
Mat A=Mat(3,4,CV_32FC1);
Mat B=Mat(4,3,CV_32FC1);
...
//矩阵A和矩阵B的相关初始化在此忽略
...
Mat C = 2*A*B;
那么,矩阵C是一个3*3矩阵,是矩阵A和矩阵B做矩阵乘法后,乘上因子2的结果。这种方式比c接口好像要更直观一点。
Mat还有其他对矩阵操作的方法,例如:
Mat C = C.inv(); //Now C is its own inverse matrix
Mat D = A.t(); //D is the transposed matrix of A
Mat的内部结构
Mat和c风格的CvMat和IplImage一样,原点(origin)在左上点,行和列的计数都是从0开始。
矩阵Mat的声明方法
矩阵可以有1,2,3或者4个通道。
最简单的创建矩阵的方法是:
Mat m = Mat(rows,cols,type);
rows和cols分别代表矩阵的行数和列数,type是矩阵的类型,与原来c风格的是一样。
如果是创建一幅图像,那么推荐的方法是:
Mat m = Mat(Size(width , height),type);
如果是创建与另外一幅图像是等大小的,那么:
Mat n = Mat(m.size() , type);
矩阵元素的访问
访问单通道矩阵是最简单的,当然也是最重要的。使用Mat的方法at就可以访问位于点(i,j)的值。
Mat a= Mat(4,3, CV_32FC1);
float elem_a= a.at<float>(i,j); //获取矩阵元素aij, i的取值范围是 0 t到rows-1 ,j的取值范围是 0 到cols-1
另外,还可以用这种方式:
Point p=Point(x,y);
float elem_a= a.at<float>(p); //注意: y 的取值范围是0 到 rows-1 , x 的取值范围是 0 到cols-1
如果需访问的矩阵是多通道矩阵,可能会麻烦一点点,但也不会太麻烦的。使用Mat的ptr方法获取指向某一行的指针,然后使用[ ]来访问在特定通道上的特定值。
type elem = matrix.ptr<type>(i)[nChannels*j+c]
其中,
type:是指矩阵的数据类型(float,double,uchar,等等)
i:行号(你要访问的是哪一行)
nChannels:矩阵的通道数(矩阵是多少通道的:1,2,3,4)
j:列号(你要访问的是哪一列)
C:通道号(你要访问的是哪一个通道的值)
使用上面的方法,其实也可以用来访问单通道的矩阵,只是nChannels的值为1,而且c=0即可。
矩阵的reshape
矩阵的reshape可以说是矩阵通道和矩阵的行之间的一种转换。例如,假设我们有一个矩阵,它的通道数是Nc , 矩阵大小是N*1 , 如果要把这个矩阵转换成单通道的N*Nc大小的矩阵,那么,使用下面的代码即可实现:
Mat a= Mat(4,1, CV_32FC3); //a 是 4*1, 3 通道矩阵
Mat b=a.reshape(1); //b 是 4*3, 1 通道矩阵
矩阵的reshape在什么样的场景中被用到呢?假如我们有个一系列的point对象,如下:
vector<;Point32f>v;//假设已经放满了数据
v里面的数据是:
[(x0, y0, z0)]
[(x1, y1, z1)]
[(x2, y2, z2)]
[(x3, y3, z3)]
[(..., ..., ...)]
那么,可以通过下面的代码,把vector v里面的数据导入到mat中:
Mat m1=Mat(v, true); //boolean 变量true是表示把数据从v拷贝到m1
如果boolean 变量不是true,那就不会是把v数据拷贝到m1,而仅仅是将m1的数据指针指向v
通过上面的代码后,矩阵m1里有了多行数据,准确的说矩阵m1是三通道,一列的矩阵,当然有多行,行数和point对象的个数一样,即m1.rows与v.size()是一样的。在这种情况下,我们可以把这个矩阵reshape成v.size行,3列,1通道的矩阵。如图:
reshape后,就可以对该矩阵进行上述的矩阵代数运算了。处理齐次笛卡儿坐标时,reshape是必须的一个步骤。
c接口与c++接口的一些等价
CvSize -> Size
CvVideoCapture -> VideoCapture
IplImage, CvMat -> Mat
cvQueryFrame -> >> (operator)
cvShowImage -> imshow
cvLoadImage -> imread