高代绿皮第四版课后习题1.6 T5

原题


设 f_{ij}(t) 是可微函数,

F(t)=\left| \begin{matrix} {​{f}_{11}}(t) & {​{f}_{12}}(t) & \cdots & {​{f}_{1n}}(t) \\ {​{f}_{21}}(t) & {​{f}_{22}}(t) & \cdots & {​{f}_{2n}}(t) \\ \vdots & \vdots & {} & \vdots \\ {​{f}_{n1}}(t) & {​{f}_{n2}}(t) & \cdots & {​{f}_{nn}}(t) \\ \end{matrix} \right|

求证:

\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\,F(t)=\displaystyle\sum\limits_{j=1}^{n}{F_{j}(t)}

其中

F_{j}(t)=\left| \begin{matrix} {​{f}_{11}}(t) & {​{f}_{12}}(t) & \cdots & \displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\,{​{f}_{1j}}(t) & {​{f}_{1n}}(t) \vspace{1ex}\\ {​{f}_{21}}(t) & {​{f}_{22}}(t) & \cdots & \displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\,{​{f}_{2j}}(t) & {​{f}_{2n}}(t) \vspace{1ex}\\ \vdots & \vdots & {} & \vdots & \vdots \vspace{1ex}\\{​{f}_{n1}}(t) & {​{f}_{n2}}(t) & \cdots & \displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\,{​{f}_{nj}}(t) & {​{f}_{nn}}(t) \\ \end{matrix} \right|


解析


思路:

根据行列式的组合定义可知

F(t)=\sum\limits_{(k_{1},k_{2},\cdots,k_{n})\in S_{n}}{(-1)^{N(k_{1},k_{2},\cdots,k_{n})}f_{k_{1}1}(t)f_{k_{2}2}(t)\cdots f_{k_{n}n}(t)}

根据求导法则进行求导即可证得结论

参考解题细节:

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值