【深度学习】步态识别-论文阅读(无参考意义):Cross-View Gait Recognition Based on Feature Fusion


基于特征融合的跨视图步态识别

摘要

与人脸识别相比,步态识别是最有前途的视频生物特征识别技术之一,步态图像易于远距离捕获,步态特征对外观伪装具有鲁棒性。

现有的许多步态识别方法都是针对单一场景的,如固定摄像机,但当视点发生变化时,识别精度会急剧下降

本文对现有的步态识别方法进行了改进,提出了一种基于特征融合的跨视角步态识别方法
首先,提出一种多尺度特征融合模块,提取不同粒度的步态序列特征;
然后,引入双路径结构,分别学习全局外观特征和细粒度局部特征。随着网络的深化,两条路径的特征逐渐融合,获得互补信息。在最后的特征映射阶段,使用GeneralizedMean池来支持区别表示。在公共数据集CASIA-B上的大量实验表明,我们的方法可以获得最先进的识别性能

步态识别,特征融合,交叉视图

介绍

应用:步态识别是指通过人的行走姿势或足迹来识别人,是身份识别中最有潜力的方法之一。它具有远距离识别的优势,而且由于步态是一种潜意识行为,因此对伪装或化妆也具有很强的抵抗力。因此,步态识别在视频监控、公共安全和认证等领域具有广阔的应用前景

挑战:
1个体在行走过程中会受到外部环境和自身姿态的影响,
2尤其是视角的变化也是限制识别性能的重要因素。当行人从一个摄像头的监控区域以不同视角移动到另一个监控区域时,会出现不同视角的步态序列,行人的轮廓会随着视角的不同而变化。因此,提高跨视角步态识别的性能仍是十分必要的。

近年来,卷积神经网络(convolutional neural network, CNN)被广泛应用于步态识别领域,在公共数据集上取得了良好的效果。GeiNet[1]以步态能量图像为输入,尝试通过卷积神经网络获得判别表示。GaitSet[2]使用2D CNN在帧级提取全局特征,将步态序列视为可以呈现时间信息的集合。然后利用集合池方法将帧级特征聚合成独立的序列级特征,比基于步态模板的方法更全面。GaitNet[3]提出了一种自动编码器框架,该框架从原始RGB图像中提取步态特征,然后利用LSTM (long-short-term memory, LSTM)网络建立步态序列时间变化模型。这些方法只利用全局特征来描述步态信息,而没有对步态序列的局部细节给予足够的关注。为了获得不同个体更细微和可区分的步态特征,Zhang e

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值