海量数据处理:Hash法

550 篇文章 558 订阅 ¥49.90 ¥99.00
518 篇文章 96 订阅
本文介绍了Hash法在海量数据处理中的应用,包括直接寻址法、取模法和随机数法。重点讨论了Hash冲突及其解决方法,如开放地址法、链地址法、再散列法和公共溢出区策略,强调了Hash在快速存取和数据分类中的重要性。
摘要由CSDN通过智能技术生成

海量数据处理:Hash法

Hash一般被称为散列,是一种映射关系,即给定一个数据元素,其关键字为key,按一个确定的散列函数计算出hash(key),把hash(key)作为关键字key对应元素的存储地址(或称散列地址),再进行数据元素的插入和检索操作。简而言之,散列函数就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

散列表是具有固定大小的数组,表长(即数组的大小)应该为质数。散列函数是用于关键字与存储地址之间的一种映射关系,但是不能保证每个元素的关键字与函数值是一一对应的,因为极有可能出现对应于不同的元素,却计算出了相同的函数值,冲突指的是两个关键字映射到同一个存储地址的情况,即对不同的关键字可能得到同一散列地址,即key1=key2,而f(key1)=f(key2)。

散列函数一般应具备以下几个特点:

  • 运算应该尽可能简单
  • 函数的值域必须在散列表的范围内
  • 尽可能的减少冲突

针对散列函数的这些特点,在构建散列表时,不仅要设定一个好的散列函数,而且还要设定一种处理冲突的方法。常用的散列函数的构建方法一般有以下几种:

(1)直接寻址法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐骑行^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值