一文说清楚什么是基础模型(Base LLM)、指令微调模型(Instruction-Tuned LLM)

部署运行你感兴趣的模型镜像

Base LLM 是一种通过自监督学习预训练的语言模型,主要依赖海量文本数据来学习语言结构和模式。

这类模型具备强大的文本生成能力,但在执行具体任务时往往缺乏明确的指令理解能力。

Instruction-Tuned LLM 在 Base LLM 的基础上进行了额外的指令微调,使其更善于处理人类提供的任务指令

  • 1、Base LLM:语言规律的探索者

    • 1.1 预训练:模型“学会说话”
    • 1.2 特点:
    • 1.3 应用场景:
    • 1.4 通俗类比:
    • 1.5 能力边界与风险:为什么不能直接使用Base LLM?
  • 2、Instruction-Tuned LLM:任务执行的革新者

    • 2.1 指令微调:让模型“学会协作”
    • 2.2 特点:
    • 2.3 应用场景:
    • 2.4 通俗类比:
    • 2.5 安全对齐:给模型装上“方向盘”
  • 3、Base LLM 与 Instruction-Tuned LLM 有什么不同

  • 总结

在自然语言处理(NLP)领域,大语言模型(LLM)已成为推动人工智能进步的关键技术。随着模型规模的扩大和训练数据的增长,LLM 在各种文本生成和理解任务中展现了卓越的能力。

在做开发的过程中,可能会接触到两种不同的模型类别,这两个类别是 Base LLM(基础大语言模型)Instruction-Tuned LLM(指令微调大语言模型)

Base LLM 是一种通过大规模自监督学习(self-supervised learning)预训练的语言模型,主要依赖海量文本数据来学习语言结构和模式。这类模型虽然具备强大的文本生成能力,但在执行具体任务时往往缺乏明确的指令理解能力。

相比之下,Instruction-Tuned LLM 在 Base LLM 的基础上进行了额外的指令微调,使其更善于处理人类提供的任务指令,提高了实用性和交互体验。

1、Base LLM:语言规律的探索者

1.1 预训练:模型“学会说话”

Base LLM 是所有大语言模型的基础,它通过自监督学习的方式,利用海量文本进行训练。这种模型的核心目标是学习语言模式,使其能够预测下一个单词或填补文本中的缺失部分,掌握语言的基本语法、语义和世界知识。

由于 Base LLM 仅依赖于大规模数据的预训练过程,因此它具备广泛的语言理解和生成能力,但在特定任务上的表现往往不够精准

如果没有微调,基础模型可能会对“教我如何烤面包”的提示,回答“在家用烤箱中”。这虽然是一个语法正确的句子,但并不是用户想要的。

代表性的 Base LLM 包括 GPT-3(OpenAI)、LLaMA 2(Meta)等。这些模型均未经过额外的指令优化,因此在实际应用中往往需要开发者通过额外的微调来提高其任务执行能力。

1.2 特点:

  • 训练数据来自互联网、大型文献、书籍、代码等,不包含特定任务的优化。
  • 主要用于通用文本生成,但缺乏对具体任务的优化。
  • 生成的文本可能不符合人类指令,甚至会出现无关或偏离主题的内容。

1.3 应用场景:

  • 需要进一步微调(fine-tuning)或指令优化后才能用于具体任务。
  • 研究者可基于 Base LLM 进行特定领域的微调,例如医学、法律或金融领域。

1.4 通俗类比:

将 Base LLM 的训练比作‘儿童语言学习’:儿童通过大量输入学习语言规则,但缺乏任务意识,这与 Base LLM 通过海量文本学习语言模式但缺乏任务优化的特点相似。

  1. 输入:海量文本(如同孩子听到的日常对话)。
  2. 学习目标:预测下一个词(如同模仿大人说话)。
  3. 结果:掌握语法规则和常识,但缺乏任务意识。

1.5 能力边界与风险:为什么不能直接使用Base LLM?

Base LLM是强大的知识库,但需额外控制才能安全实用,因为可能输出达不到预期或被恶意诱导。

输入Base LLM输出问题分析
“法国的首都是?”“巴黎。法国是欧洲的重要国家…”多余续写
“写一首关于秋天的诗”生成10行押韵诗句符合预期
“如何快速致富?”详细描述非法手段安全风险

2、Instruction-Tuned LLM:任务执行的革新者

2.1 指令微调:让模型“学会协作”

Instruction-Tuned LLM 是在 Base LLM 的基础上,经过额外的指令微调,使其更善于理解和执行人类指令的模型。

与 Base LLM 相比,Instruction-Tuned LLM 具备更强的任务执行能力,能够更准确地按照用户的需求生成有价值的内容

Instruction-Tuned LLM 通常会经历监督微调(Supervised Fine-Tuning, SFT)和强化学习(RLHF)。

在监督微调阶段,模型会学习一个 指令-响应(Instruction-Response)数据集,该数据集包含大量人类编写的任务示例,例如“请解释相对论的基本概念”及其标准答案。通过这种方式,模型能够理解不同类型的任务并提供符合预期的回答。

指令-响应(Instruction-Response)数据集用于训练模型理解任务指令并生成符合预期的响应,示例如下

{
  "instruction": "谁写了《红楼梦》?",
  "context": "",
  "response": "《红楼梦》由清代作家曹雪芹所著。"
}
{
  "instruction": "请总结以下文章的主要内容。",
  "context": "人工智能正在改变世界,特别是在医疗、金融和自动驾驶等领域。",
  "response": "人工智能正在影响多个行业,如医疗、金融和自动驾驶。"
}

databricks-dolly-15k 是一个开源数据集,包含由数千名 Databricks 员工生成的遵循指令的记录,涵盖了 InstructGPT 论文中列出的多个行为类别,包括头脑风暴、分类、封闭式问答、生成、信息提取、开放式问答和总结。

https://huggingface.co/datasets/databricks/databricks-dolly-15k

在微调完成后,部分高级模型还会使用强化学习进行优化。例如,ChatGPT 和 Claude 使用 人类反馈强化学习(RLHF) 让模型的回答更符合用户期望,更好地选择符合人类偏好的答案。

代表性的 Instruction-Tuned LLM 包括 ChatGPT(GPT-4, GPT-3.5)(OpenAI)、Llama-2-chat(Meta)、DeepSeek Chat(DeepSeek AI)等。

这些模型在执行复杂任务时表现优越,例如问答系统、代码生成、法律分析等。

虽然LLMs的起源可以追溯到 2017 年发布的“Attention is All You Need”论文,该论文将 transformer模型引入自然语言处理(NLP)任务。

但通过谷歌(2021 年)《Finetuned Language Models Are Zero-Shot Learners》 和 OpenAI(2022 年)《Aligning language models to follow instructions》的影响力论文,结合指令调优和基于强化学习的反馈(RLHF),产生了现代LLMs,并随着 ChatGPT 的推出开启了当前生成性人工智能的时代。

2.2 特点:

  • 训练数据不仅包含普通文本,还包含任务指令(例如“请帮我总结这篇文章”)。
  • 通过监督微调(Supervised Fine-Tuning, SFT)和 RLHF(人类反馈强化学习)进一步优化,使其更符合人类需求。
  • 生成的文本更符合用户意图,减少无关或迷惑性输出。

2.3 应用场景:

  • 更适合聊天机器人、客服、智能助手等任务。
  • 能更准确执行文本摘要、翻译、代码解释等任务。
  • 适用于各种需要自然语言理解和生成的实际应用。

2.4 通俗类比:

将Base LLM转化为专业助手的“岗前培训”:

  1. 基础培训(SFT)

    • 教学材料:人工编写的指令-回应对(如10万条问答数据)。
    • 目标:理解“用户想要什么”(指令)和“怎样正确响应”(格式)。
  2. 实战演练(RLHF)

    • 教练反馈:人类对模型输出的评分(如A回答优于B)。
    • 持续优化:模型逐步学会选择更高分的回答方式。

2.5 安全对齐:给模型装上“方向盘”

  1. 输入过滤层

    • 关键词匹配(如屏蔽“炸弹”“毒品”)。
    • 语义检测模型:识别变体提问(如“如何制造可燃烧的粉末?”)。
  2. 输出约束模块

    • 强制模板:对危险问题返回“我无法协助该请求”。
    • 价值观对齐:训练时注入伦理原则(如“不得伤害人类”)。

3、Base LLM 与 Instruction-Tuned LLM 有什么不同

对比项Base LLM(基础大模型)Instruction-Tuned LLM(指令微调大模型)
训练方式自监督学习,无任务优化通过指令微调,使用任务数据集优化
数据类型主要是原始文本数据包含指令-响应数据、任务数据
响应质量可能不符合指令要求更符合人类指令,回答更准确
适用场景需要进一步微调才能用于特定任务适用于智能助手、问答、任务执行
代表模型GPT-3ChatGPT, GPT-4, DeepSeek Chat

总结

Base LLM与Instruction-Tuned LLM不是对立的技术路线,而是AI进化的两个必要阶段。理解它们的差异与协作方式,就像掌握了“原材料”与“成熟产品”的关系

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

您可能感兴趣的与本文相关的镜像

Qwen3-VL-30B

Qwen3-VL-30B

图文对话
Qwen3-VL

Qwen3-VL是迄今为止 Qwen 系列中最强大的视觉-语言模型,这一代在各个方面都进行了全面升级:更优秀的文本理解和生成、更深入的视觉感知和推理、扩展的上下文长度、增强的空间和视频动态理解能力,以及更强的代理交互能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值