RAG知识库:Dify 与ChatWiki 的全方位对比评测及企业选型方案

企业基于大语言模型构建智能应用的需求日益增长,RAG(检索增强生成)技术成为提升模型输出质量与专业性的关键。Dify 和 ChatWiki 作为两款热门的 RAG 工具,为企业提供了不同的解决方案。下面从多个维度对二者进行全方位对比评测,并给出企业选型建议。

一、产品介绍

1.Dify

Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。

官网链接:https://dify.ai/zh
github开源链接:https://github.com/langgenius/dify

2.ChatWiki

ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)和GraphRAG知识图谱构建,提供开箱即用的数据处理、模型调用等能力,企业,高校和政务部门可快速搭建私有的知识库AI 问答系统。

官网链接:https://chatwiki.com/

github开源链接:https://github.com/zhimaAi/chatwiki

二、功能对比

1.Dify

‌RAG 能力‌:支持文档分段优化、元数据过滤、多格式文档解析(PDF/PPT/HTML 等),检索精准度更高‌。

开发灵活性‌:可视化工作流编排、Prompt IDE 调试、支持外部工具(数据库/API)接入‌。

‌数据处理‌:支持结构化数据(CSV/Excel)、在线数据源(Notion/网页爬虫),支持知识库实时更新‌。

企业级特性‌:可以对成员分配应用程序的的权限(仅使用/编辑/建立)。

‌部署与渠道覆盖‌:需根据API二次开发实现渠道对接。

2.ChatWiki

RAG 能力‌:支持ODF/Word/PDF/Excel/网页等多格式数据批量导入,通过NLP自动清洗、向量化处理,实现语义检索与上下文精准关联。

‌开发灵活性‌:可视化工作流编排、支持外部工具(数据库/API)接入‌。

‌数据处理‌:支持从上传的PDF、Word等知识库文档中自动提取内嵌图片,问答过程中当关联到含图片的文档内容时,机器人将同步返回文本与图片信息,实现精准的图文关联回复。

企业级特性‌:提供企业级多级权限控制,支持角色分配(管理员/编辑员/只读成员),满足敏感数据管控与团队协作需求。

‌部署与渠道覆盖‌:生成嵌入式代码、API接口或H5链接,无缝接入微信公众号、微信小程序、企业微信、APP、抖音、快手、官网等平台 。

三、模型支持

1.Dify

支持60+开源/商业模型(Llama3、GPT-4等),需手动配置本地模型。

模型供应商分为两种:

  • 自有模型。该类型的模型供应商提供的是自己开发的模型。如 OpenAI,Anthropic 等。

  • 托管模型。该类型的模型供应商提供的是第三方模型。如 Hugging Face,Replicate 等。

在 Dify 中接入不同类型的模型供应商的方式稍有不同。

接入自有模型的模型供应商

接入自有模型的供应商后,Dify 会自动接入该供应商下的所有模型。

在 Dify 中设置对应模型供应商的 API key,即可接入该模型供应商。

2.ChatWiki

聚合GPT-4、Claude、DeepSeek、文心一言、火山引擎等20+国内外大模型,支持动态切换或混合调用,平衡成本与效果。

四、集成与部署

1.Dify
支持零编码集成嵌入第三方系统,提供了云服务,用户无需自己部署即可使用其完整功能,也可以进行本地部署,包括Docker Compose部署和本地码源部署等方式。
2.ChatWiki

ChatWiki支持云服务和本地部署。支持多种部署方式,包括docker部署、离线docker部署、免docker部署,完全本地部署,源码安装。

五、技术架构

1.Dify

2.ChatWiki

六、应用场景

选择Dify的场景‌:

  • 企业需构建复杂AI应用(如智能合同审核、自动化报告生成)‌。

  • 需要多模型协作(如GPT-4与本地模型混合调用)或LLMOps全生命周期管理‌。

选择ChatWiki的场景‌:

  • 快速搭建内部知识库问答系统(如客服FAQ、产品手册查询)‌。

  • 需智能留资机器人或轻量级AI客服(如线索收集与基础对话引导)‌

### ChatWiki 知识库概述 ChatWiki 是一种集成化的知识管理系统,旨在帮助团队和个人高效地创建、管理和共享信息。该系统支持文档下载、安装指导以及详细的配置说明。 #### 文档下载 为了获取最新的 ChatWiki 使用指南和其他相关文档,建议访问官方资源站点或 GitHub 仓库。通常这些位置会提供稳定版本的 PDF 或 HTML 格式的使用手册[^1]。 ```bash wget https://example.com/downloads/chatwiki-user-guide.pdf ``` 此命令可用于从指定 URL 下载用户指南到本地计算机。 #### 安装过程 安装 ChatWiki 前需确认服务器环境满足最低要求,包括操作系统兼容性和依赖包安装。一般情况下,遵循以下通用流程: 1. 获取最新发布的压缩包; 2. 解压文件至目标目录; 3. 执行初始化脚本完成设置; 对于基于 Linux 的系统,可以执行如下 Shell 脚本来简化操作: ```shell tar -zxvf chatwiki-latest.tar.gz -C /opt/ cd /opt/chatwiki && ./install.sh ``` #### 配置选项 初次启动后应立即调整核心参数以适应具体应用场景。编辑 `config.yaml` 文件可修改数据库连接字符串、端口监听地址等重要属性。例如: ```yaml database: host: "localhost" port: 5432 server: bind_address: "0.0.0.0" http_port: 8080 ``` 以上 YAML 片段展示了部分常见配置项及其默认值。 #### 示例应用 成功部署之后即可开始构建自定义页面和模块。下面是一个简单的 Python API 请求例子,用来查询特定条目内容并显示结果摘要: ```python import requests response = requests.get('http://localhost:8080/api/v1/pages/GettingStarted') print(response.json()['summary']) ``` 这段代码片段演示了如何调用 RESTful 接口检索 Wiki 页面的信息,并打印出简介文字。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值