以下是 Dify、ChatWiki、MaxKB 三大 RAG 知识库系统的核心对比分析:
一、核心定位
Dify
全功能 LLM 应用开发平台,支持复杂工作流、多模型协作与企业级知识治理,适用于需要高度定制化的生成式 AI 应用开发场景。
ChatWiki
企业级开箱即用 AI 问答中枢,专注快速构建安全、多场景的智能知识服务系统,强调业务场景的快速适配性。
MaxKB
垂直领域知识库问答系统,核心聚焦 RAG 技术与轻量级 AI 集成,适合中小型企业或垂直场景的知识管理需求。
二、模型兼容性
Dify
支持60+开源/商业模型(Llama3、GPT-4等),需手动配置本地模型。
ChatWiki
聚合GPT-4、Claude、DeepSeek、文心一言、火山引擎等20+国内外大模型,支持动态切换或混合调用,平衡成本与效果。
MaxKB
覆盖国内外 30+ 模型(DeepSeek / Llama/ 腾讯混元 / 字节豆包等),强调模型中立性。
三、RAG核心能力
Dify
支持文档分段优化、元数据过滤、多格式文档解析(PDF/PPT/HTML 等),检索精准度更高。
ChatWiki
支持OFD/Word/PDF/Excel/网页等多格式数据批量导入,通过NLP自动清洗、向量化处理,实现语义检索与上下文精准关联。
尤其支持GraphRAG,一种基于图结构数据的检索增强生成技术,其核心原理是将非结构化文本转化为图结构知识表示,利用实体间的关系网络实现更深层次的语义理解和上下文感知检索。
传统RAG依赖向量相似性检索,而GraphRAG通过图结构分析实体间的复杂关联,支持多跳推理和跨文档关系挖掘。
适用于需处理高关联性实体、多维度上下文的任务,例如复杂问答和长文本分析。
MaxKB
支持Markdown、TXT、PDF、DOCX、HTML、等格式文件,全流程 RAG 支持(文档爬取/向量化/混合检索/权限管理)。
四、部署与集成
Dify
可视化工作流编排、Prompt IDE 调试、支持外部工具(数据库/API)接入。
ChatWiki
可视化工作流编排、支持外部工具(数据库/API)接入。
MaxKB
内置强大的工作流引擎和函数库,支持编排 AI 工作过程,满足复杂业务场景下的需求。
五、适用场景推荐
Dify:
- 大型企业构建智能客服、内容生成等高定制化 AI 应用
- 开发团队搭建技术中台,实现多模型统一调度与 LLMOps 管理
ChatWiki:
- 金融、医疗等敏感行业搭建合规知识库或智能客服
- 需快速嵌入现有系统(网页、小程序),实现 24/7 自动化应答
MaxKB:
- 中小型企业构建内部知识库(如售后指南、产品手册)
- 业务部门独立配置问答策略,无需开发介入
选型建议:
优先 Dify:强在技术扩展性,适合深度定制需求。
优先 ChatWiki:强在开箱即用与企业级安全,适合快速业务落地。
优先 MaxKB:强在轻量化和垂直领域优化,适合资源有限的团队。