Dify、Coze 、ChatWiki 与 FastGPT ,四大智能体平台深度对比。

Dify、Coze、ChatWiki 与 FastGPT 这四大智能体平台,各有千秋。

一、Dify

Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。

官网链接:Dify.AI · 生成式 AI 应用创新引擎 

Github:https://github.com/langgenius/dify

1.功能优势

①工作流: 在画布上构建和测试功能强大的 AI 工作流程,利用以下所有功能以及更多功能。

②全面的模型支持: 与数百种专有/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Mistral、Llama3 以及任何与 OpenAI API 兼容的模型。

③Prompt IDE: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。

④RAG Pipeline: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。

⑤Agent 智能体: 您可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DALL·E、Stable Diffusion 和 WolframAlpha 等。

⑥LLMOps: 随时间监视和分析应用程序日志和性能。您可以根据生产数据和标注持续改进提示、数据集和模型。

⑦后端即服务: 所有 Dify 的功能都带有相应的 API,因此您可以轻松地将 Dify 集成到自己的业务逻辑中。

2.系统框架

3.技术栈

Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。

二、Coze

扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 AI 应用,并将 AI 应用发布到各个社交平台、通讯软件,也可以通过 API 或 SDK 将 AI 应用集成到你的业务系统中。

借助扣子提供的可视化设计与编排工具,你可以通过零代码或低代码的方式,快速搭建出基于大模型的各类 AI 项目,满足个性化需求、实现商业价值。

官网:扣子

Github:https://github.com/cloudwego/eino

1.功能优势

①灵活的工作流设计:扣子的工作流功能可以用来处理逻辑复杂,且有较高稳定性要求的任务流。扣子提供了大量灵活可组合的节点包括大语言模型 LLM、自定义代码、判断逻辑等,无论你是否有编程基础,都可以通过拖拉拽的方式快速搭建一个工作流。例如创建一个撰写行业研究报告的工作流,让智能体写一份 20 页的报告。

②无限拓展的能力集:扣子集成了丰富的插件工具,极大地拓展智能体的能力边界。扣子官方发布了多款能力丰富的插件,你可以直接将这些插件添加到智能体中。例如使用新闻插件,打造一个可以播报最新时事新闻的 AI 新闻播音员。扣子平台也支持创建自定义插件。 你可以将已有的 API 能力通过参数配置的方式快速创建一个插件让智能体调用。自定义插件也可以发布到商店,供其他用户使用。

③丰富的数据源:扣子提供了简单易用的知识库功能来管理和存储数据,支持智能体与你自己的数据进行交互。无论是内容量巨大的本地文件还是某个网站的实时信息,都可以上传到知识库中。这样,智能体就可以使用知识库中的内容回答问题了。

④持久化的记忆能力:扣子提供了方便 AI 交互的数据库记忆能力,可持久记住用户对话的重要参数或内容。创建一个数据库来记录阅读笔记,包括书名、阅读进度和个人注释。有了数据库,智能体就可以通过查询数据库中的数据来提供更准确的答案。

2.代码框架

三、ChatWiki

ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)和GraphRAG知识图谱构建,提供开箱即用的数据处理、模型调用等能力,企业,高校和政务部门可快速搭建私有的知识库AI 问答系统。

官网链接:ChatWiki言之AI-开源大模型问答知识库AI机器人

github开源链接:https://github.com/zhimaAi/chatwiki

1.功能优势

①简单易用的企业专属AI问答智能体,通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。支持DeepSeek R1、doubao pro、qwen max、Openai、Claude 等全球20多种主流模型。

②灵活的工作流配置,提供灵活的工作流配置功能,支持多步骤任务编排与自动化处理。用户可根据业务需求自定义问答流程、数据流转,实现复杂场景下的智能化协作与管理。通过工作流,可以实现聊天机器人与业务系统的互通。

③提供了多样化的调用渠道,支持 嵌入网站桌面客户端WebApp微信小程序微信公众号微信客服抖音企业号快手号视频号 及API调用等,全面覆盖企业多终端业务场景需求。

④支持Graph RAG,Graph RAG(图检索增强生成)是一种结合了图数据库(Graph Database)与检索增强生成(Retrieval-Augmented Generation, RAG)技术的新型知识增强生成框架。它通过图结构(节点和边)组织知识,利用图数据库的高效关联查询能力,提升大语言模型(LLM)在复杂推理和多跳问题中的表现。

2.系统框架

3.技术栈

  • 前端:vue.js

  • 后端:golang +python

  • 数据库:PostgreSQL16+pgvector+zhparser

  • 缓存:redis5.0

  • web服务:nginx

  • 异步队列:nsq

  • 进程管理:supervisor

  • 模型:支持OpenAI、Google Gemini、Claude3、通义千文、文心一言、讯飞星火、百川、腾讯混元等模型。

四、FastGPT

FastGPT是一个功能强大的平台,专注于知识库训练和自动化工作流程的编排。它提供了一个简单易用的可视化界面,支持自动数据预处理和基于Flow模块的工作流编排。FastGPT支持创建RAG系统,提供自动化工作流程等功能,使得构建和使用RAG系统变得简单,无需编写复杂代码。

官方链接:https://fastgpt.in/

Github:https://github.com/labring/FastGPT

1.功能优势

  • 项目开源:FastGPT 遵循附加条件 Apache License 2.0 开源协议,你可以 Fork 之后进行二次开发和发布。FastGPT 社区版将保留核心功能,商业版仅在社区版基础上使用 API 的形式进行扩展,不影响学习使用。

  • 独特的 QA 结构:针对客服问答场景设计的 QA 结构,提高在大量数据场景中的问答准确性。

  • 可视化工作流:通过 Flow 模块展示了从问题输入到模型输出的完整流程,便于调试和设计复杂流程。

  • 无限扩展:基于 API 进行扩展,无需修改 FastGPT 源码,也可快速接入现有的程序中。

  • 便于调试:提供搜索测试、引用修改、完整对话预览等多种调试途径。

  • 支持多种模型:支持 GPT、Claude、文心一言等多种 LLM 模型,未来也将支持自定义的向量模型。

2.知识库核心流程图

3.部署架构图

### FastGPTDifyCoze 的技术文档使用指南 #### 关于FastGPT FastGPT 是一种专注于提高推理速度和降低硬件需求的大规模预训练模型框架。该框架利用多种先进的剪枝技术和量化方法来减少参数量并加速计算过程,使得即使是在移动终端这样的低功耗平台上也能高效执行复杂的自然语言处理任务[^1]。 对于开发者而言,在应用开发过程中可以借助 FastGPT 提供的一系列工具链完成从模型微调到部署上线全流程操作;而对于研究者来说,则能够基于此平台探索更多关于轻量化网络结构设计的可能性。 ```python import fastgpt as fg model = fg.load_model('path/to/model') output = model.predict(input_data) ``` #### Dify 平台介绍 Dify 则是一个面向企业级用户的 AI 应用服务平台,允许用户快速搭建自己的人工智能解决方案。通过集成 Agent 工作流机制,实现了诸如自动回复等功能模块的无缝对接,特别适合用于社交媒体互动场景下的即时响应服务建设[^2]。 具体来讲,当接收到新的聊天请求时,系统会触发相应的事件处理器,并按照预先设定好的逻辑链条依次调用各个组件直至最终形成完整的应答内容返回给对方。整个流程既灵活又易于扩展维护。 ```json { "agent": { "name": "WeChat Autoresponder", "triggers": ["new_message"], "actions": [ {"type": "analyze_intent"}, {"type": "generate_response"} ] } } ``` #### 探索Coze生态 至于 Coze ,这是一套开源协作环境,旨在促进不同背景的研究人员和技术爱好者之间的交流共享。在这里不仅可以获取最前沿的知识资料更新,还可以参到实际项目当中去实践所学理论知识。社区内活跃着众多来自世界各地的朋友,大家共同致力于推动机器学习领域向前发展. 值得注意的是,虽然上述三个产品各有侧重,但它们都体现了当前AI行业追求高性能的同时兼顾易用性的趋势特点。无论是个人还是团队都可以从中找到适合自己发展的方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值