行列式学习

本文围绕行列式展开,介绍了行列式的定义,如二阶、三阶行列式的形式。阐述了计算方法,包括二阶、三阶行列式的计算及n阶行列式的计算思路。还讲解了全排列、对换等概念,以及行列式的性质和展开方式,如拉布拉斯展开式、余子式和代数余子式等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行列式

        一.什么是行列式?

        行列式就是一些数字按正方形摆放,组成一个不断嵌套的正方形。最常见的是二阶行列式和三阶行列式。二阶行列式指的是每行都有两个数字,共有两行。三阶行列式指的是每行有三个数字,共有三行。

二阶举例:  \begin{matrix} a11 \ a22 \\ a21\ a22 \end{matrix}         三阶举例:\begin{matrix} \ a11 \ \ a12 \ \ a13 \\ a21\ \ a22 \ \ a23 \\ a31 \ \ a32 \ \ a33 \end{matrix}

对于数字aij,i就代表第几行,j就代表第几列,这就是行列式的简单定义。(行列式左右是直线围着,把数字夹在中间)

        二.怎么计算?

        引进概念主对角线和副对角线:主对角线是左上角到右下角;副对角线是右上角到左下角。对于二阶行列式主对角线的数乘起来减去副对角线乘起来,例如a11*a22-a12*a21就是他的值,三阶行列式用对角线法则,不细说,简单方法就是绕圈,先走a11-a22-a33,(这些数字都是相乘),左或右两个小正方形对角线和另一边的顶角,a21-a32-a13,再走另一边,a12-a23-a31,把这三个乘积结果相加,就是a11*a22*a33+a21*a32*a13+a12*a23*a31,第二步是翻过来,沿着副对角线出发,也是同样的道理,得到a13*a22*a31+a12*a21*a33+a23*a32*a11,D=a11*a22*a33+a21*a32*a13+a12*a23*a31-a13*a22*a31+a12*a21*a33+a23*a32*a11。(说的复杂了,没图将就一下)

        三.全排列和对换

        全排列是什么?n个不同(记着是不同)的元素排成一列,叫做这n个元素的全排列(排列)。既然是排列,肯定有大有小,如果我们说从小到大是标准的顺序,那么对于每一个元素,在他前面肯定都有比他大的,那么所有比自己大的元素的个数之和就是这个排列的逆序数,比如对于13245,逆序数就是1,因为3比2大,当然标准顺序是从小到大。逆序数是奇数,叫奇排列,是偶数就是偶排列。

        再说说对换。就是交换排列中的某两个元素。每交换一下,逆序数的奇偶性变一次。对于一个奇排列,变成标准顺序需要对换的次数是奇数次,因为标准顺序的逆序数是0。

        四.n阶行列式

        1.类比于二阶三阶,n阶就是n行n列。你问我怎么计算?让我告诉你个方法,对于n阶行列式,先挑出n个数字,要求是,来自不同的行不同的列,然后把他们乘起来,把这些数字的行和列分别排成序列,求总逆序数t,最后就是这些数字相乘再乘一个(-1)的t次,这是一次计算,你需要挑n次,而且每次用过的数字不再使用,记住来自不同行不同列。最后把这些计算的结果加起来就是行列式的值。

        2.特殊的行列式:上三角,下三角,对角。

        上三角指的是主对角线以下的数字全为0,下三角指的是主对角线以上的数字全为0。对角就是只有主对角线有数字。这种行列式的值计算就是对角线相乘。如果是副对角线符合这样,那就加个负号。

        五.行列式性质

        1.转置行列式和本身相等。

        转置行列式就是每个数字的角标对换。

        2.交换任意两行行列式,行列式值变成相反数。

        3.对于某一行所有元素乘以k,等于k乘这个行列式,类似于提公因式。

        4.某一行加上k乘另一行,这个行列式结果不变。

        5.如果两行行列式成比例,行列式结果为0。

        6.如果有一行每个数字都能拆成2个数字之和,那么就可以分为2个行列式,其余全部不变,对于这一行,第一个行列式是加数,第二个行列式是被加数。

        7.以上所有性质对于列也成立。行一般用r表示,row-行,列一般用c,column-列。

        六.行列式展开。

        1.拉布拉斯展开式。

        针对的是\begin{matrix} a11 \ \ a22 \ \ 0\ \ 0 & \\ a21 \ \ a22 \ \0\ \0\\ c11 \ \ c12 \ \ b11\ \ b12 \\ c21 \ \ c22 \ \ b21 \ \ b22& \end{matrix}这种行列式,你能发现右上角为0,他的计算方法就是把a化解乘下三角行列式,求出D1。把b化解成下三角行列式,求出D2,结果为D1*D2

        2.余子式和代数余子式

        余子式Mij指划去行列式i行和j列,剩下的组成行列式。代数余子式就是余子式乘\large ^{\left ( - 1\right )^{i+j}}

那么行列式的另一种计算方法就是\large \sum_{j=1}^{j<n}a1j*A1j这个方法就叫做行列式按列(行)展开法则。

如果某一行只有一个元素,其余都为0,那么就D直接等于aij*Aij,aij就是这个元素本身。

        3.范德蒙德行列式

        范德蒙德指第一行全为1,第二行开始是(x1)n-1次 、(x2)n-1次,..(xn)n-1次以此类推直到第n行结束。n指当前的行数。他的计算方式是\prod (xi-xj)其中有n\geq i\geq j\geq 1

——————————分割线

这就是一些基本性质和学习经验,记录学习2022/10/29。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值