yolov4目标检测项目

1.yolov4原理

YOLOv4是一种基于深度学习的物体检测算法,具有高精度、高效率等优点。其核心原理是使用卷积神经网络(CNN)构建一个端到端的物体检测模型,利用多尺度特征和多层次特征融合的方式进行物体检测。

具体来说,YOLOv4采用了多个关键技术和创新点,以提高物体检测的准确性和速度。首先,它使用了一种称为CSPDarknet53的特征提取网络,该网络结合了跨阶段局部网络(CSPNet)和Darknet53的优点,以增强特征提取能力和减少计算量。其次,YOLOv4引入了空间金字塔池化(SPP)模块,通过多尺度池化操作融合不同尺度的特征信息,提高了模型对多尺度物体的检测能力。此外,YOLOv4还采用了路径聚合网络(PAN)结构,通过自底向上的特征金字塔增强特征信息的传递,进一步提升了特征融合的效果。

在检测头部分,YOLOv4采用了YOLOv3的锚框机制,通过预设的锚框大小和比例来预测物体的边界框。同时,它还引入了损失函数优化、数据增强等技巧,进一步提升了模型的检测性能。

综上所述,YOLOv4通过结合多种技术和创新点,实现了高精度、高效率的物体检测,成为目前物体检测领域中的领先算法之一。

2.数据准备

水果数据集

点击下载

 下载位置C盘(根据个人喜好安放位置)

3.环境配置

anaconda

 

cuda安装

部分截图,详情请参考b站视频,视频链接:【CUDA安装/多CUDA兼容】Windows深度学习环境配置_哔哩哔哩_bilibili

 

4.训练数据

运行voc_annotation.py

这个脚本的具体内容和功能可能因不同的项目或库而异,因此很难给出一个通用的运行结果。这个脚本可能与VOC(Visual Object Classes)数据集的标注有关,它可能用于生成、解析或转换VOC格式的标注文件。

如果你正在尝试运行一个特定的 voc_annotation.py 脚本,并且希望得到关于它的运行结果的帮助,那么你应该首先检查该脚本的文档或源代码以了解其功能和预期输出。通常,这些信息可以在脚本的开头部分的注释中找到。

运行train.py

运行predict.py

5.测试结果

YOLOv4声称拥有最先进的精度,同时保持高处理速度。具体来说,在Tesla V100上,YOLOv4在MS COCO数据集上实现了43.5%的准确率(65.7% AP50),并且在该精度下达到了约65FPS的速度。此外,YOLOv4与EfficientDet性能相当,但推理速度比其快两倍。与YOLOv3相比,YOLOv4的AP和FPS分别提高了10%和12%。

此外,在实际应用中,如基于YOLOv4的车辆检测跟踪系统,在白天高速公路场景下跟踪准确率可以大于99%。不过,这只是一个特定应用场景下的测试结果,不同应用场景和硬件条件下的测试结果可能会有所不同。

请注意,以上只是YOLOv4在某些特定测试和场景下的表现。对于特定的应用或需求,可能需要进行更详细的测试和评估。同时,随着技术的不断进步,新的目标检测模型可能会不断出现,因此在选择模型时,需要根据实际需求和场景进行综合考虑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值