中电金信Gien享汇・大数据专题|从数据分析视角看零售客户经营

文章探讨了金融行业从产品中心到客户中心再到价值挖掘的数智化转变,强调了数据分析在客户经营中的关键作用。通过七步走策略和应用场景(如个性化推荐、关系图谱挖掘、地理位置分析),银行利用AI、大数据技术提升客户体验和营销效果。同时,文章提到了个信法对数据处理的法律要求,倡导使用隐私计算技术保障客户隐私。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本期嘉宾

符永钰

中电金信数据分析和管理咨询专家

  • 中国澳门大学,管理学硕士

  • 曾任职IBM GBS、IMSHealth 等多家大型公司

  • 近10年跨国跨行业的数据分析和管理咨询从业经验

  • 专注于数据分析、数据管理和金融场景数字化应用实践

通过本期视频,您将了解到:

一、客户分析与经营背景介绍

  1. 金融客户经营管理经历了以产品为中心的信息化阶段、以客户为中心的数字化阶段,现在逐步迈入对客户全生命周期“价值挖掘”的数智化阶段,充分借助AI、大数据等技术实现全场景、全链路、全渠道的全域经营。

  2. 国家出台多项政策推动金融业数据能力建设,加速提升金融机构构建数字化客户经营能力:加强数据要素市场的培育和保护,实现“有数可用、用数规范”,加强对通信网络、算力等基础设施的建设,并大力培育数字化生态。

  3. 用户消费行为多元化、线上化、个性化,促使金融机构利用数字化营销手段进行精细化客户经营,实现营销渠道多元化、内容推荐个性化。

二、从数据分析角度解读客户经营策略

1.构建以“客户为中心”的七步走经营策略

七步走策略指客群洞察、适配产品、适配权益、适配渠道、适配内容、合理评价、适配波次,并形成闭环管理策略,回答“5W1H”的核心问题。

银行可借鉴互联网公司的普遍做法,打造包括客户会员体系、权益体系、积分体系、标签体系在内的客户价值体系,按贡献价值、客户特征以及交互深度对客户分层分群,判断通过何种渠道,推送哪些内容和产品。

2.数据分析应用场景

场景1:挖掘模型+策略组合应用进行产品个性化推荐

场景2:基于关系图谱挖掘潜客

场景3:地址位置分析应用

三、个信法解读及客户经营趋势

  • 在数据采集、传输、存储、使用和销毁过程中应注意规避的法律风险及应对措施。

  • 要注重极致客户体验,并加强隐私计算技术在营销领域的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值