对复数求偏导

这篇内容介绍了如何对复数函数进行偏导数求解,将复数转化为实数函数处理,利用共轭性质和复数的加减乘除规则,通过实例展示了如何分别对复数的实部和虚部进行偏导数计算。关键步骤包括将复数函数转换为关于实部和虚部的函数,然后分别求导。
摘要由CSDN通过智能技术生成

设复数z=x+y*1jz^*表示复数z的共轭,函数f\left ( z \right )是关于复数的z函数,且可导,则\frac{\partial f}{\partial z}\frac{\partial f}{\partial z^*}如何求解。对多实数变量函数求偏导比较熟悉,可以固定某一个自变量将其他变量看做常数,然后对这个自变量求导。复数函数求偏导同样也可以换成实数函数进行求偏导,可以将f\left ( z \right )转化为关于实数x,y的函数 f\left ( x,y \right )。由于x=\frac{1}{2}\left ( z+z^* \right ),y=\frac{1}{2j}\left ( z-z^* \right );所以\frac{\partial x}{\partial z}=\frac{1}{2}\frac{\partial y}{\partial z}=\frac{1}{2j}。所以

\frac{\partial f}{\partial z}=\frac{\partial f\left ( z \right )}{\partial x}\cdot \frac{\partial x}{\partial z} + \frac{\partial f\left ( z \right )}{\partial y}\cdot \frac{\partial y}{\partial z} =\frac{1}{2}\left(\frac{\partial f\left(z \right )}{\partial x}-j\frac{\partial f\left(z \right )}{\partial y} \right )

 由于\frac{\partial x}{\partial z^*}=\frac{1}{2}\frac{\partial y}{\partial z}=\frac{j}{2}。所以:

\frac{\partial f}{\partial z^*}=\frac{\partial f\left ( z \right )}{\partial x}\cdot \frac{\partial x}{\partial z^*} + \frac{\partial f\left ( z \right )}{\partial y}\cdot \frac{\partial y}{\partial z^*} =\frac{1}{2}\left(\frac{\partial f\left(z \right )}{\partial x}+j\frac{\partial f\left(z \right )}{\partial y} \right )

由以上两式可得\frac{\partial f}{\partial z^*}=\left(\frac{\partial f}{\partial z} \right )^*


参考文献: Simon Haykin,自适应滤波器原理(第五版)

 

  • 10
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值