什么是列联表分析(Contingency table analysis)?

列联表分析用于探究两个或多个定性变量之间的关联性,通过统计量如卡方检验来判断变量间是否独立。在R中,可以使用内置函数进行卡方独立性检验,以理解性别与运动选择等分类变量的关系。如果p值小于显著性水平,说明变量间存在统计学上的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是列联表分析(Contingency table analysis)?

列联表(Contingency Table)(有时称为“交叉表”,crosstabs)是一种总结两个类别变量(categorical)之间关系的表。通过使用透视表函数可以很容易地为R中的变量创建一个列联表。

列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

一般,若总体中的个体可按两个属性A、B分类,A有r个等级A1,A2,…,Ar,B有c个等级B1,B2,…,Bc,从总体中抽取大小为n的样本,设其中有nij个个体的属性属于等级Ai和Bj,nij称为频数,将r×c个nij排列为一个r行c列的二维列联表,简称r×c表。若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。

列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。

### 如何在 Python 中使用 `scipy.stats.chi2_contingency` 构造应用列联表 #### 列联表的概念 列联表是一种用于表示两个分类变量之间关系的表格形式。通过统计方法可以评估这些变量之间的独立性假设是否成立。 #### 使用 `chi2_contingency` 进行列联表分析 `scipy.stats.chi2_contingency` 是 SciPy 提供的一个函数,专门用来执行卡方检验并返回相关统计数据。以下是其基本用法: - 输入参数是一个二维数组或多维数组,代表观察频数。 - 返回值包括卡方统计量、p 值、自由度以及期望频率矩阵。 下面提供一个完整的示例代码来展示如何构造应用列联表。 ```python import numpy as np from scipy.stats import chi2_contingency # 定义观测数据(四维例子) observed_data = np.array([[[[12, 17], [11, 16]], [[11, 12], [15, 16]]], [[[23, 15], [30, 22]], [[14, 17], [15, 16]]]) # 执行卡方检验 result = chi2_contingency(observed_data) # 输出结果 print(f"Chi-square statistic: {result.statistic}") # 卡方统计量[^2] print(f"P-value: {result.pvalue}") # p 值 print(f"Degrees of freedom: {result.dof}") # 自由度 print("Expected frequencies:\n", result.expected_freq) # 期望频率矩阵 ``` 上述代码展示了如何利用多维数组作为输入来进行更复杂的列联表分析。对于简单的二分类情况,也可以简化为如下形式: ```python # 简单的 2x2 列联表 observed_simple = np.array([[10, 20], [15, 25]]) # 计算卡方检验 result_simple = chi2_contingency(observed_simple) # 输出简单案例的结果 print(f"Simplified Chi-square statistic: {result_simple.statistic}") print(f"Simplified P-value: {result_simple.pvalue}") ``` #### 结果解释 当运行以上代码时,会得到以下几项重要指标: - **卡方统计量**:衡量实际观测值与理论预期值差异的程度。 - **P 值**:判断两组数据间是否存在显著关联的关键依据。如果 p 值小于设定的阈值(通常为 0.05),则拒绝原假设,认为两者有关联;反之,则接受原假设,认为无明显关联。 - **自由度**:取决于行数减一乘以列数减一。 - **期望频率矩阵**:基于独立性的假设计算得出的理想分布状态下的数值。 #### 应用场景 该技术广泛应用于市场调研、医学研究等领域中的数据分析工作当中,帮助研究人员理解不同类别间的潜在联系及其强度。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值