【SPSS】列联表分析详细操作教程(附案例实战)

文章介绍了列联表分析的概念,包括交叉分组频数分析和卡方检验的步骤,如原假设、统计量计算、显著性水平及结论判断。通过案例展示了在Python中进行列联表分析和卡方检验的过程,揭示变量间的相关性。在处理期望频数小于5的情况时,建议使用似然比卡方检验作为修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


列联表分析

什么是列联表分析?

列联表分析也叫作交叉分组下的频数分析,用来分析变量间的相互影响和关系

 列联表分析的基本任务

  • 编制交叉列联表
  • 在交叉列联表的基础上,对两变量间是否存在一定的相关性进行分析

列联表的卡方检验

1.提出原假设(H0)

列联表分析中卡方检验的原假设是:行变量与列变量独立

2.计算检验统计量

列联表分析中卡方检验的检验统计量是Pearson卡方统计量,其数学定义为: 

 其中,r为列联表的行数;c为列联表的列数;fij o为观测频数; fij e为期望频数,期望频数的计算方法是:

 RT为指定单元格所在行的观测频数合计; CT为指定单元格所在列的观测频数合计; n为观测频数的总计;

        例如:30岁以下且低血压组的期望频数为98x95/474=19.6, 其他单元格的期望频数相同的算法。 期望频数的分布反映的是行列变量独立下的分布。         

3.确定显著性水平和临界值

显著性水平α是指原假设为真却将其拒绝的风险,即弃真的概 率,通常设为0.05或0.01。在卡方检验中,由于卡方统计量服从 “(行数-1)x (列数-1)”个自由度的卡方分布,因此,在行列 数目和显著性水平α确定时,卡方临界值是唯一确定的。 

4.得出结论和决策

  • 根据统计量观测值和临界值比较的结果进行决策 :如果卡方统计量的观测值大于卡方临界值,则认为卡方值已经足够大,实际分布与期望分布之间的差距显著,可以拒绝原假 设,断定列联表的行列变量间不独立,存在相关关系
  • 根据统计量观测值的概率P值和显著性水平α比较的结果进行决策:如果P值小于等于α,则拒绝原假设,断定列联表的行列变 量间不独立,存在相关关系

列联表卡方检验说明

  • 如果交叉列联表中有较多单元格(20%以上)中的期望频数小于5,则一般不宜使用卡方检验。此 时,可以采用似然比卡方检验等方法进行修正
  • 卡方值的大小也会受到样本量的影响,所以,也有必要对Pearson卡方值进行修正,以剔除样本量 的影响 

列联表分析案例 

【案例】 —— 影响高考志愿填报的因素与性别是否有关 

①选择菜单【分析】----> 【描述统计】----> 【交叉表】

②在“交叉表”对话框中选择行变量、列变量

③再点击上图(交叉表对话框)中的【单元格(E)】按钮,指定列联表单元格中的输出内容 

④点击交叉表对话框中的【统计(S)】按钮指定使用卡方检验来分析行变量和列变量间的关系 

⑤分析结果

结论:由于卡方的概率P值小于α,因此应拒绝原假设,认为不同性别的学生填报高考志愿时考虑的因素是不一致的。 

补充:

在卡方检验表中还出现了下面的两个卡方检验

  • 似然比卡方检验,用于对Pearson卡方检验进行修正
  • 线性关联卡方检验(Mantel-Haenszel),用于检验列联表中行列变量的线性相关性,原假 设是行列变量零相关,只适用于定序型变量,不能用于定类型变量

评论 63
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值