线性方程组有齐次线性方程组和非齐次线性方程组:AX = b;AX = 0
齐次线性方程组的解的结构:
设q1,q2,q3,……,qn为齐次线性方程组AX=0的一组线性无关解,如果方程组Ax=09任意一个解均可表示为q1,q2,q3,……,qn的线性组合,则称q1,q2,q3,……,qn为方程组的一个基础解系。
设A为m×n的矩阵,若r(A)<n;则其次线性方程组AX = 0才存在基础解系,且基础解系包含n-r个线性无关的解向量,这时方程组的通解可以表示为x =k1 q1+k2q2+k3q3+……+knqn
其中k1,……,kn为任意常数,q1,q2,q3,……,qn为基础解系。
非齐次线性方程组解的结构:
非齐次线性方程组解的结构:
非齐次线性方程组AX=b的任意一个解均可以表示为方程组Ax=b的一个解与其对应的导出组Ax=0的某个解之和。
当非齐次线线性方程组有无穷多个解时,他的通解可以表示为:x =q0+k1 q1+k2q2+k3q3+……+knqn;其中qo是AX = b的一个特解,k1,……,kn为任意常数,q1,q2,q3,……,qn为AX = 0的一个基础解系。
注:
1,基础解析并无唯一。
2,齐次的通解即相应的为基础解系
3,非齐次的通解为对应的特解加上齐次的通解。
q1,q2,q3,……,qs为基础解系的条件:
1,q1,q2,q3,……,qn为AX =0的解
2,q1,q2,q3,……,qn线性无关
3,S = n - r;
齐次线性方程组AX = 0的基础解系不唯一,方程组的所有的解,都是建立在基础解系的基础上的,并且,方程组的每组解,并不一定线性无关。若解为唯一的线性无关组中的解,那么一定线性无关;但若是线性无关组的组合,那么就不一定线性无关了。