开始看匹配滤波呢,并不知道是个什么东东,纪念逝去的一年,为了不浪费这七年,得怎样拼命的赶路啊。。。请告诉我我的抉择没有错,请一个人在努力的前行吧!!!
摘要:MF对血管和非血管边缘都有很强的响应,因此提出MF-FDOG(the matched filter with first-order derivative of the Gaussian)检测血管,血管剖面结构类似于镜像高斯分布,我们用一组滤波器–0均值高斯滤波器和高斯微分–来检测血管。对于真血管来说,在它的峰值区会有一个强响应,而在峰值区的局部均值对于FDOG响应接近0。反之,对于非血管结构,如陡峭的边缘,不仅对MF有高响应而且对FDOG的局部均值也很高。基于这一区别我们可以利用FDOG很好的分辨血管和非血管边缘结构。
MF-FDOG对眼底图像滤波会得到两个响应图像,H(by MF)和D(by FDOG)。血管图像对H设置一个阈值T来获得,而 T通过D来调整以消除非血管边缘和提取正确的血管。
The matched filter
利用血管剖面结构近似于一个高斯函数这一先验知识,因此使用一个高斯形状的滤波器来匹配血管用于探测。MF定义为
s代表滤波器的范围,用来归一化滤波器的均值为0使得平滑的背景滤波后可以移除,L是邻近区域沿着y轴到平滑噪声的长度,标准t是一个常量通常设为3因为在高斯曲线下超过99%的区域位于【-3s,3s】之内。参数L也要基于s选择,当s很小的时候,L就很大。同时f(x,y)会被旋转用来检测血管的不同方向。
然而问题在于MF对血管非血管的边缘结构也会有强响应,阈值化后两者都能探测到,问题转变为找到一个合适的滤波器区分开血管和非血管边缘。
TheMF-FDOG
基于血管剖面是一个镜像的高斯函数而边缘是非镜像的,我们使用一组滤波器来区分高斯型血管构造和非血管边缘。FDOG定义为。我们用MF-FDOG用在血管探测因为血管剖面结构是高斯型的对于MF有强的响应而对于FDOG是非镜像的,相反,虽然非血管结构边缘对于MF也有强响应但是对于FDOG是强烈的并且是镜像的。
两幅图分别为MF滤波后的结果h和FDOG滤波后的结果d,对d局部均值的结果dm.但是对于h来说两者幅度都很高(100和300处),对于dm来说这两处血管幅值低,边缘幅值高,因此dm可用来调整阈值T来检测真的血管边缘同时去除非血管边缘。换句话说,T的值由dm确定。若dm的幅值很低,意味着邻近区域可能有血管出现,所以施加于h的阈值T应该小一点来探测边缘,如果dm幅值高意味着非血管边缘可能会出现,因此阈值T应该大一点来抑制非血管边缘。
我们提出一种用MF-FDOG的阈值设定的方法来探测眼底图像的血管,阈值运用于眼底图像对MF的响应,但是阈值的取值应根据眼底图像对FDOG的响应来设置。对眼底图像用MF-FDOG滤波后得到两幅图像H(by MF)和D(by FDOG),对D用均值滤波得到Dm=D*W,W是一个w*w的滤波器所有的元素为1/w2.局部均值图像Dm然后被归一化每个元素范围为【0,1】,用D~表示。阈值T设为,Tc是一个参考阈值,这篇文章设为
,uh是H的平均值,c是一个常数根据经验设置为2~3,将T用于H,最后的血管图Mh是如下
由上式可知,如果图像中有血管,对应的幅度值会很小,因此阈值
也会变小,这样血管就能被检测到。若图像中有非血管结构,
幅度值会很大,因此
也增大,这样非血管就能被抑制。
(a)theoriginalimage im0001 from the STARE database,
(b)the response map to MF,
(c) the local mean of the response to FDOG,
(d)the vessel extraction result after applying a global threshold to the MF response map,
(e)the extraction result of the proposed scheme and
(f)the ground truth vessel map.
Experimentalresults
我们使用了一个multi-scale MF-FDOG approach,换言之我们用一个大尺寸来探测粗的血管,小尺寸来定位细血管。两者的提取结果使用逻辑或操作简单结合。参数设置s=1.5,L=9(wide vessels), s=1, L=5(thin vessels), W=31×31,c=2.3,8个方向
MF-FDOG filtering.根据经验设置。
MF-FDOG方法提出的重要目的之一
在于压抑了MF对非正常视网膜图像病变和斑点的响应。
Retinal vessel extraction by matched filter with first-order derivative ofGaussian
最新推荐文章于 2024-03-15 17:28:59 发布