Retinal vessel extraction by matched filter with first-order derivative ofGaussian

该文提出了一种名为MF-FDOG的匹配滤波器方法来提取眼底图像中的血管。MF对血管和非血管边缘都有响应,而FDOG能区分血管和非血管边缘。通过MF和FDOG的结合,可以调整阈值,有效提取血管并抑制非血管结构。实验结果表明,MF-FDOG方法在抑制非血管响应和检测眼底血管方面表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  开始看匹配滤波呢,并不知道是个什么东东,纪念逝去的一年,为了不浪费这七年,得怎样拼命的赶路啊。。。请告诉我我的抉择没有错,请一个人在努力的前行吧!!!
  摘要:MF对血管和非血管边缘都有很强的响应,因此提出MF-FDOG(the matched filter with first-order derivative of the Gaussian)检测血管,血管剖面结构类似于镜像高斯分布,我们用一组滤波器–0均值高斯滤波器和高斯微分–来检测血管。对于真血管来说,在它的峰值区会有一个强响应,而在峰值区的局部均值对于FDOG响应接近0。反之,对于非血管结构,如陡峭的边缘,不仅对MF有高响应而且对FDOG的局部均值也很高。基于这一区别我们可以利用FDOG很好的分辨血管和非血管边缘结构。
  MF-FDOG对眼底图像滤波会得到两个响应图像,H(by MF)和D(by FDOG)。血管图像对H设置一个阈值T来获得,而 T通过D来调整以消除非血管边缘和提取正确的血管。
  The matched filter
  利用血管剖面结构近似于一个高斯函数这一先验知识,因此使用一个高斯形状的滤波器来匹配血管用于探测。MF定义为这里写图片描述
  s代表滤波器的范围,这里写图片描述用来归一化滤波器的均值为0使得平滑的背景滤波后可以移除,L是邻近区域沿着y轴到平滑噪声的长度,标准t是一个常量通常设为3因为在高斯曲线下超过99%的区域位于【-3s,3s】之内。参数L也要基于s选择,当s很小的时候,L就很大。同时f(x,y)会被旋转用来检测血管的不同方向。
  然而问题在于MF对血管非血管的边缘结构也会有强响应,阈值化后两者都能探测到,问题转变为找到一个合适的滤波器区分开血管和非血管边缘。
  TheMF-FDOG
   基于血管剖面是一个镜像的高斯函数而边缘是非镜像的,我们使用一组滤波器来区分高斯型血管构造和非血管边缘。FDOG定义为这里写图片描述。我们用MF-FDOG用在血管探测因为血管剖面结构是高斯型的对于MF有强的响应而对于FDOG是非镜像的,相反,虽然非血管结构边缘对于MF也有强响应但是对于FDOG是强烈的并且是镜像的。
  这里写图片描述
  两幅图分别为MF滤波后的结果h和FDOG滤波后的结果d,对d局部均值的结果dm.但是对于h来说两者幅度都很高(100和300处),对于dm来说这两处血管幅值低,边缘幅值高,因此dm可用来调整阈值T来检测真的血管边缘同时去除非血管边缘。换句话说,T的值由dm确定。若dm的幅值很低,意味着邻近区域可能有血管出现,所以施加于h的阈值T应该小一点来探测边缘,如果dm幅值高意味着非血管边缘可能会出现,因此阈值T应该大一点来抑制非血管边缘。
  我们提出一种用MF-FDOG的阈值设定的方法来探测眼底图像的血管,阈值运用于眼底图像对MF的响应,但是阈值的取值应根据眼底图像对FDOG的响应来设置。对眼底图像用MF-FDOG滤波后得到两幅图像H(by MF)和D(by FDOG),对D用均值滤波得到Dm=D*W,W是一个w*w的滤波器所有的元素为1/w2.局部均值图像Dm然后被归一化每个元素范围为【0,1】,用D~表示。阈值T设为这里写图片描述,Tc是一个参考阈值,这篇文章设为这里写图片描述,uh是H的平均值,c是一个常数根据经验设置为2~3,将T用于H,最后的血管图Mh是如下这里写图片描述
  由上式可知,如果图像中有血管,对应的这里写图片描述幅度值会很小,因此阈值这里写图片描述也会变小,这样血管就能被检测到。若图像中有非血管结构,这里写图片描述幅度值会很大,因此这里写图片描述也增大,这样非血管就能被抑制。这里写图片描述
(a)theoriginalimage im0001 from the STARE database,
(b)the response map to MF,
(c) the local mean of the response to FDOG,
(d)the vessel extraction result after applying a global threshold to the MF response map,
(e)the extraction result of the proposed scheme and
(f)the ground truth vessel map.
Experimentalresults
我们使用了一个multi-scale MF-FDOG approach,换言之我们用一个大尺寸来探测粗的血管,小尺寸来定位细血管。两者的提取结果使用逻辑或操作简单结合。参数设置s=1.5,L=9(wide vessels), s=1, L=5(thin vessels), W=31×31,c=2.3,8个方向
MF-FDOG filtering.根据经验设置。
  MF-FDOG方法提出的重要目的之一
在于压抑了MF对非正常视网膜图像病变和斑点的响应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值