更广义的莱布尼兹公式

“Product Rule” for Differential Operators

  • 首先上一个传统的莱布尼茨公式!

( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^n C_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

  • to prove the following identity:
  • L be a linear differential operator of order n
    • characteristic polynomial p n p_n pn.
  • Then for functions v , y v,y v,y

  • 例如 L = a D 2 + b D + c L=aD^2 +bD+c L=aD2+bD+c

L [ v y ] = a ( v y ′ ′ + 2 v ′ y ′ + v ′ ′ y ) + b ( v ′ y + v y ′ ) + c v y L[vy]= a(vy''+2v'y'+v''y)+b(v'y+vy')+cvy L[vy]=a(vy+2vy+vy)+b(vy+vy)+cvy

= v ( a y ′ ′ + b y ′ + c y ) + v ′ ( 2 a y ′ + b y ) + 1 2 v ′ ′ ( 2 a y ) = v(ay''+by'+cy)+v'(2ay'+by) + \frac{1}{2}v''(2ay) =v(ay+by+cy)+v(2ay+by)+21v(2ay)

  • 咋证明呢?

ode和matlab结合的东西

y ( 4 ) − 5 y ( 3 ) + 7 y ( 2 ) − 3 y ′ = 2 e t ( 4 t 2 + 2 t + 7 ) y^{(4)} - 5y^{(3)} + 7y^{(2)} - 3y'= 2e^t(4t^2+2t+7) y(4)5y(3)+7y(2)3y=2et(4t2+2t+7)

  • 似乎 y = t 2 ( − t 2 3 + t 3 − 6 ) e t y = t^2(\frac{-t^2}{3}+\frac{t}{3} -6)e^t y=t2(3t2+3t6)et是他的结果
  • 下面验证一下结果!
syms t;
y = t^2*(-1/3*t^2 + 1/3 *t -6)*exp(t);
result = diff(y,t,4) - 5* diff(y,t,3) + 7 *diff(y,t,2)-3 * diff(y,t,1);
simplify(result)

  • 首先 ( r − 1 ) 2 r ( r − 3 ) (r-1)^2r(r-3) (r1)2r(r3)
  • 所以有一个特解长这样子
    • t 2 ( c 2 t 2 + c 1 t + c 0 ) e t t^2(c_2t^2 + c_1 t + c_0)e^t t2(c2t2+c1t+c0)et

所以 L [ { t 2 ( c 2 t 2 + c 1 t + c 0 ) } e t ] L[\{t^2(c_2t^2 + c_1 t + c_0)\}e^t] L[{t2(c2t2+c1t+c0)}et]

$ = $

k 1 k ! \frac{1}{k!} k!1 v ( k ) v^{(k)} v(k) p ( k ) p^{(k)} p(k) p ( k ) ( 1 ) p^{(k)}(1) p(k)(1)
01 c 2 t 4 + c 1 t 3 + c 0 t 2 c_2t^4 + c_1 t^3 + c_0t^2 c2t4+c1t3+c0t2 r 4 − 5 r 3 + 7 r 2 − 3 r r^4 - 5r^3 + 7r^2 - 3r r45r3+7r23r0
11 4 c 2 t 3 + 3 c 1 t 2 + 2 c 0 t 4c_2t^3 + 3c_1 t^2 + 2c_0t 4c2t3+3c1t2+2c0t 4 r 3 − 15 r 2 + 14 r − 3 4r^3 - 15r^2 + 14r - 3 4r315r2+14r30
2 1 2 \frac{1}{2} 21 12 c 2 t 2 + 6 c 1 t + 2 c 0 12c_2t^2 + 6c_1 t + 2c_0 12c2t2+6c1t+2c0 12 r 2 − 30 r + 14 12 r^2 - 30r + 14 12r230r+14-4
3 1 6 \frac{1}{6} 61 24 c 2 t + 6 c 1 24c_2t + 6c_1 24c2t+6c1 24 r − 30 24 r -30 24r30-6
4 1 24 \frac{1}{24} 241 24 c 2 24c_2 24c2 24 24 2424
  • 所以

− 2 ( 12 c 2 t 2 + 6 c 1 t + 2 c 0 ) − ( 24 c 2 t + 6 c 1 ) + 24 c 2 = 2 ( 4 t 2 + 2 t + 7 ) -2(12c_2t^2 + 6c_1 t + 2c_0)-(24c_2t + 6c_1)+24c_2 = 2(4t^2+2t+7) 2(12c2t2+6c1t+2c0)(24c2t+6c1)+24c2=2(4t2+2t+7)

− 24 c 2 = 8 -24c_2 = 8 24c2=8
− 12 c 1 − 24 c 2 = 4 -12c_1 -24c_2 = 4 12c124c2=4
− 4 c 0 − 6 c 1 + 24 c 2 = 14 -4c_0 -6c_1 +24c_2 = 14 4c06c1+24c2=14

  • c 0 = − 6 c_0 = -6 c0=6
  • c 1 = 1 3 c_1 = \frac{1}{3} c1=31
  • c 2 = − 1 3 c_2 = \frac{-1}{3} c2=31

二维求和交换

L [ v y ] = ∑ i = 0 n a i ( v y ) ( i ) L[vy] = \sum_{i=0}^na_i(vy)^{(i)} L[vy]=i=0nai(vy)(i)

= ∑ i = 0 n a i ∑ k = 0 i C i k v ( k ) y ( i − k ) = \sum\limits_{i=0}^na_i\sum\limits_{k=0}^iC_i^kv^{(k)}y^{(i-k)} =i=0naik=0iCikv(k)y(ik)

  • 以上是二维求和,调换维度变成下面这样了!

= ∑ k = 0 n v ( k ) ∑ i = k n C i k a i y ( i − k ) = \sum\limits_{k=0}^n v^{(k)} \sum\limits_{i=k}^{n}C_{i}^{k}a_{i}y^{(i-k)} =k=0nv(k)i=knCikaiy(ik)

= ∑ k = 0 n v ( k ) ∑ i = k n ( i ) ( i − 1 ) . . . ( i − k + 1 ) k ! a i y ( i − k ) = \sum\limits_{k=0}^n v^{(k)}\sum\limits_{i=k}^n \frac{(i)(i-1)...(i-k+1)}{k!}a_i y^{(i-k)} =k=0nv(k)i=knk!(i)(i1)...(ik+1)aiy(ik)
= ∑ k = 0 n v ( k ) k ! ∑ i = k n ( i ) ( i − 1 ) . . . ( i − k + 1 ) a i y ( i − k ) = \sum\limits_{k=0}^n \frac{v^{(k)}}{k!}\sum\limits_{i=k}^n (i)(i-1)...(i-k+1)a_i y^{(i-k)} =k=0nk!v(k)i=kn(i)(i1)...(ik+1)aiy(ik)
= ∑ k = 0 n v ( k ) k ! L ( k ) [ y ] = \sum\limits_{k=0}^n \frac{v^{(k)}}{k!} L^{(k)}[y] =k=0nk!v(k)L(k)[y]

  • L ( k ) L^{(k)} L(k)到底长啥样子呢?

L = ∑ i = 0 n a i x i L = \sum\limits_{i=0}^n a_ix^i L=i=0naixi

L ( k ) = ∑ i = k n ( i ) ( i − 1 ) . . . ( i − k + 1 ) a i x i − k L^{(k)} = \sum\limits_{i=k}^n (i)(i-1)...(i-k+1)a_ix^{i-k} L(k)=i=kn(i)(i1)...(ik+1)aixik

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值