“Product Rule” for Differential Operators
- 首先上一个传统的莱布尼茨公式!
( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^n C_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
- to prove the following identity:
- L be a linear differential operator of order n
- characteristic polynomial p n p_n pn.
- Then for functions v , y v,y v,y

- 例如 L = a D 2 + b D + c L=aD^2 +bD+c L=aD2+bD+c
L [ v y ] = a ( v y ′ ′ + 2 v ′ y ′ + v ′ ′ y ) + b ( v ′ y + v y ′ ) + c v y L[vy]= a(vy''+2v'y'+v''y)+b(v'y+vy')+cvy L[vy]=a(vy′′+2v′y′+v′′y)+b(v′y+vy′)+cvy
= v ( a y ′ ′ + b y ′ + c y ) + v ′ ( 2 a y ′ + b y ) + 1 2 v ′ ′ ( 2 a y ) = v(ay''+by'+cy)+v'(2ay'+by) + \frac{1}{2}v''(2ay) =v(ay′′+by′+cy)+v′(2ay′+by)+21v′′(2ay)
- 咋证明呢?

ode和matlab结合的东西
y ( 4 ) − 5 y ( 3 ) + 7 y ( 2 ) − 3 y ′ = 2 e t ( 4 t 2 + 2 t + 7 ) y^{(4)} - 5y^{(3)} + 7y^{(2)} - 3y'= 2e^t(4t^2+2t+7) y(4)−5y(3)+7y(2)−3y′=2et(4t2+2t+7)
- 似乎 y = t 2 ( − t 2 3 + t 3 − 6 ) e t y = t^2(\frac{-t^2}{3}+\frac{t}{3} -6)e^t y=t2(3−t2+3t−6)et是他的结果
- 下面验证一下结果!
syms t;
y = t^2*(-1/3*t^2 + 1/3 *t -6)*exp(t);
result = diff(y,t,4) - 5* diff(y,t,3) + 7 *diff(y,t,2)-3 * diff(y,t,1);
simplify(result)
- 首先 ( r − 1 ) 2 r ( r − 3 ) (r-1)^2r(r-3) (r−1)2r(r−3)
- 所以有一个特解长这样子
- t 2 ( c 2 t 2 + c 1 t + c 0 ) e t t^2(c_2t^2 + c_1 t + c_0)e^t t2(c2t2+c1t+c0)et
所以 L [ { t 2 ( c 2 t 2 + c 1 t + c 0 ) } e t ] L[\{t^2(c_2t^2 + c_1 t + c_0)\}e^t] L[{t2(c2t2+c1t+c0)}et]
$ = $
k | 1 k ! \frac{1}{k!} k!1 | v ( k ) v^{(k)} v(k) | p ( k ) p^{(k)} p(k) | p ( k ) ( 1 ) p^{(k)}(1) p(k)(1) |
---|---|---|---|---|
0 | 1 | c 2 t 4 + c 1 t 3 + c 0 t 2 c_2t^4 + c_1 t^3 + c_0t^2 c2t4+c1t3+c0t2 | r 4 − 5 r 3 + 7 r 2 − 3 r r^4 - 5r^3 + 7r^2 - 3r r4−5r3+7r2−3r | 0 |
1 | 1 | 4 c 2 t 3 + 3 c 1 t 2 + 2 c 0 t 4c_2t^3 + 3c_1 t^2 + 2c_0t 4c2t3+3c1t2+2c0t | 4 r 3 − 15 r 2 + 14 r − 3 4r^3 - 15r^2 + 14r - 3 4r3−15r2+14r−3 | 0 |
2 | 1 2 \frac{1}{2} 21 | 12 c 2 t 2 + 6 c 1 t + 2 c 0 12c_2t^2 + 6c_1 t + 2c_0 12c2t2+6c1t+2c0 | 12 r 2 − 30 r + 14 12 r^2 - 30r + 14 12r2−30r+14 | -4 |
3 | 1 6 \frac{1}{6} 61 | 24 c 2 t + 6 c 1 24c_2t + 6c_1 24c2t+6c1 | 24 r − 30 24 r -30 24r−30 | -6 |
4 | 1 24 \frac{1}{24} 241 | 24 c 2 24c_2 24c2 | 24 24 24 | 24 |
- 所以
− 2 ( 12 c 2 t 2 + 6 c 1 t + 2 c 0 ) − ( 24 c 2 t + 6 c 1 ) + 24 c 2 = 2 ( 4 t 2 + 2 t + 7 ) -2(12c_2t^2 + 6c_1 t + 2c_0)-(24c_2t + 6c_1)+24c_2 = 2(4t^2+2t+7) −2(12c2t2+6c1t+2c0)−(24c2t+6c1)+24c2=2(4t2+2t+7)
−
24
c
2
=
8
-24c_2 = 8
−24c2=8
−
12
c
1
−
24
c
2
=
4
-12c_1 -24c_2 = 4
−12c1−24c2=4
−
4
c
0
−
6
c
1
+
24
c
2
=
14
-4c_0 -6c_1 +24c_2 = 14
−4c0−6c1+24c2=14
- c 0 = − 6 c_0 = -6 c0=−6
- c 1 = 1 3 c_1 = \frac{1}{3} c1=31
- c 2 = − 1 3 c_2 = \frac{-1}{3} c2=3−1
二维求和交换
L [ v y ] = ∑ i = 0 n a i ( v y ) ( i ) L[vy] = \sum_{i=0}^na_i(vy)^{(i)} L[vy]=i=0∑nai(vy)(i)
= ∑ i = 0 n a i ∑ k = 0 i C i k v ( k ) y ( i − k ) = \sum\limits_{i=0}^na_i\sum\limits_{k=0}^iC_i^kv^{(k)}y^{(i-k)} =i=0∑naik=0∑iCikv(k)y(i−k)
- 以上是二维求和,调换维度变成下面这样了!

= ∑ k = 0 n v ( k ) ∑ i = k n C i k a i y ( i − k ) = \sum\limits_{k=0}^n v^{(k)} \sum\limits_{i=k}^{n}C_{i}^{k}a_{i}y^{(i-k)} =k=0∑nv(k)i=k∑nCikaiy(i−k)
=
∑
k
=
0
n
v
(
k
)
∑
i
=
k
n
(
i
)
(
i
−
1
)
.
.
.
(
i
−
k
+
1
)
k
!
a
i
y
(
i
−
k
)
= \sum\limits_{k=0}^n v^{(k)}\sum\limits_{i=k}^n \frac{(i)(i-1)...(i-k+1)}{k!}a_i y^{(i-k)}
=k=0∑nv(k)i=k∑nk!(i)(i−1)...(i−k+1)aiy(i−k)
=
∑
k
=
0
n
v
(
k
)
k
!
∑
i
=
k
n
(
i
)
(
i
−
1
)
.
.
.
(
i
−
k
+
1
)
a
i
y
(
i
−
k
)
= \sum\limits_{k=0}^n \frac{v^{(k)}}{k!}\sum\limits_{i=k}^n (i)(i-1)...(i-k+1)a_i y^{(i-k)}
=k=0∑nk!v(k)i=k∑n(i)(i−1)...(i−k+1)aiy(i−k)
=
∑
k
=
0
n
v
(
k
)
k
!
L
(
k
)
[
y
]
= \sum\limits_{k=0}^n \frac{v^{(k)}}{k!} L^{(k)}[y]
=k=0∑nk!v(k)L(k)[y]
- L ( k ) L^{(k)} L(k)到底长啥样子呢?
L = ∑ i = 0 n a i x i L = \sum\limits_{i=0}^n a_ix^i L=i=0∑naixi
L ( k ) = ∑ i = k n ( i ) ( i − 1 ) . . . ( i − k + 1 ) a i x i − k L^{(k)} = \sum\limits_{i=k}^n (i)(i-1)...(i-k+1)a_ix^{i-k} L(k)=i=k∑n(i)(i−1)...(i−k+1)aixi−k