\begin{block}{我们寻找的$G(h,h^t)$,$G$决定了我们的迭代公式}
\begin{equation}
G(h,h^t)=F(h^t)+(h-h^t)^T\nabla F(h^t)+\frac{1}{2}(h-h^t)^T K(h^t)(h-h^t)
\end{equation}
可是$K(h^t)$是什么东西呢?其实$K(h^t)$就是个对角阵,对角元素依次是列向量$W^TWh^t$除以$h^t$对应元素.
\end{block}
展示的如下:
\begin{block}{我们寻找的$G(h,h^t)$,$G$决定了我们的迭代公式}
\begin{equation}
G(h,h^t)=F(h^t)+(h-h^t)^T\nabla F(h^t)+\frac{1}{2}(h-h^t)^T K(h^t)(h-h^t)
\end{equation}
可是$K(h^t)$是什么东西呢?其实$K(h^t)$就是个对角阵,对角元素依次是列向量$W^TWh^t$除以$h^t$对应元素.
\end{block}
展示的如下: