数学分析第四版上册70页14题

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zhoutianzi12/article/details/93541707

数学分析第四版上册70页14题

f(a,+)f定义在(a,+\infty)
f(a,b)f在每一个有限区间(a,b)有界
limx+(f(x+1)f(x))=A\lim_{x \to +\infty}(f(x+1)-f(x))=A
证明:
limx+f(x)x=A\lim_{x \to +\infty}\frac{f(x)}{x}=A

证明:

咋做啊!!!!
特码的xx是实数,咋办啊!

如果xx是正整数,那么太简单了哦!
f(n)n=(f(n)f(n1))+....(f(2)f(1))+f(1)n\frac{f(n)}{n}=\frac{(f(n)-f(n-1))+....(f(2)-f(1))+f(1)}{n}
f(n)f(n1)=g(n)如果俺们把f(n)-f(n-1)=g(n)
f(n)n=g(n)+...g(1)n+f(1)n\frac{f(n)}{n}=\frac{g(n)+...g(1)}{n}+\frac{f(1)}{n}
n+limx+g(n)=An\to +\infty显然等于\lim_{x \to +\infty}g(n)=A

这个咋做呢
f(x)x={f(x)f(x1)[x]no\frac{f(x)}{x}=\{\frac{f(x)-f(x-1)}{[x]-n_o}
+f(x1)f(x2)[x]no+\frac{f(x-1)-f(x-2)}{[x]-n_o}
+...f(x(x[n0]))f(x(x[n0]+1)[x]no}+...\frac{f(x-(x-[n_0]))-f(x-(x-[n_0]+1)}{[x]-n_o}\}
[x]x0x\frac{[x]-x_0}{x}

limx+([x]x0x)=1看到了\lim_{x+\infty}(\frac{[x]-x_0}{x})=1
limf(x)x=limx+f(x)f(x1)=A所以特奶奶的,\lim_{f(x)}{x}=\lim_{x +\infty}{f(x)-f(x-1)}=A

展开阅读全文

没有更多推荐了,返回首页