Attention Mechanism 注意力机制

Attention Mechanism 注意力机制


注: 本文是作者的自我总结,没有严格地系统地讲述.本文主要作为个人总结记录, 欢迎大家批评,交流. https://zhouxiaowei1120.github.io/#blogs

Introduction 简介

Attention 可以认为是区分重要程度的一种方法,该机制通过计算不同位置的权重因子,给出不同位置的重要程度. 很多论文中,基本上会有这种公式,用来表示attention:
α i , j = exp ⁡ ( e i , j ) ∑ exp ⁡ ( e i , j ) \alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum\exp(e_{i,j})} αi,j=exp(ei,j)exp(ei,j)

几种attention应用方式

  1. Self Attention GAN:
    Self-Attention Generative Adversarial NetworksSelf Attention GAN
  2. Soft Attention
    Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanismsoft attention
  3. Semantic Attention
    Image Captioning with Semantic Attention
    在这里插入图片描述
  4. Attention-GAN
    Attention-GAN for Ob ject Transfiguration in Wild Images
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值