Attention Mechanism 注意力机制
注: 本文是作者的自我总结,没有严格地系统地讲述.本文主要作为个人总结记录, 欢迎大家批评,交流. https://zhouxiaowei1120.github.io/#blogs
Introduction 简介
Attention 可以认为是区分重要程度的一种方法,该机制通过计算不同位置的权重因子,给出不同位置的重要程度. 很多论文中,基本上会有这种公式,用来表示attention:
α
i
,
j
=
exp
(
e
i
,
j
)
∑
exp
(
e
i
,
j
)
\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum\exp(e_{i,j})}
αi,j=∑exp(ei,j)exp(ei,j)
几种attention应用方式
- Self Attention GAN:
Self-Attention Generative Adversarial Networks - Soft Attention
Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism - Semantic Attention
Image Captioning with Semantic Attention
- Attention-GAN
Attention-GAN for Ob ject Transfiguration in Wild Images