自动驾驶(三十二)---------车辆行人识别

      车辆行人识别传统的方法有很多,我记得以前大家喜欢搞HOG+SVM、XGboost等方法,但是深度学习出来之后,其他基本上就销声匿迹,所以现在基本上是深度学习一家独大。

      目前市面上成熟的物体检测的模型有:YOLO_V3、SSD、R-FCN,这里详细整理出来,供大家学习。

1. YOLO_V1

      传统CNN在识别阶段,需要用过滑动窗口的方式,遍历图片所有位置、大小的窗口,放入识别模型去识别,这无疑加大了识别的时间,YOLO很好的避免了这个问题,具体做法如下:

    设计理念                                                        

  1. Yolo的CNN网络将输入的图片分割成  网格,然后每个单元格负责去检测那些中心点落在该格子内的目标,如图所示,可以看到狗这个目标的中心落在左下角一个单元格内,那么该单元格负责预测这个狗。
  2. 每个单元格会预测  个边界框以及边界框的置信度。所谓置信度其实包含两个方面,一是这个边界框含有目标的可能性大小,二是这个边界框的准确度。前者记为  ,当该边界框是不包含目标时,此时  。而当该边界框包含目标时,  。主要这里包含任何类型物体的可能性。
  3. 边界框的准确度用预测框与实际框(ground truth)的IOU(交并比)来表征 。因此置信度为  。很多人可能将Yolo的置信度看成边界框是否含有目标的概率,但是其实它是两个因子的乘积,预测框的准确度也反映在里面。
  4. 边界框的大小与位置可以用4个值来表征:  ,其中 x,y 是边界框的中心坐标,而 w 和 h 是边界框的宽与高。中心坐标的预测值  是相对于每个单元格左上角坐标点的偏移值,并且相对于整个图片的宽与高的比例。而边界框的 w 和 h 预测值也是相对于整个图片的宽与高的比例,这样理论上4个元素的大小应该在  范围。
  5. 这样,每个边界框的预测值实际上包含5个元素:  ,其中前4个表征边界框的大小与位置,而最后一个值是置信度。
  6. 对于每一个单元格其还要给出预测出 C 个类别概率值,其表征的是由该单元格负责预测的边界框其目标属于各个类别的概率。
  7. 值得注意的是,不管一个单元格预测多少个边界框,其只预测一组类别概率值,这是Yolo算法的一个缺点,在后来的改进版本中,Yolo9000是把类别概率预测值与边界框是绑定在一起的。我们可以计算出各个边界框类别置信度:

                                                                    

     网络设计

       Yolo采用卷积网络来提取特征,然后使用全连接层来得到预测值。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。对于卷积层和全连接层,采用Leaky ReLU激活函数:  。但是最后一层却采用线性激活函数。

                       

     对于每一个单元格,前20个元素是类别概率值,然后2个元素是边界框置信度,两者相乘可以得到类别置信度,最后8个元素是边界框的  。

     网络训练        

       YOLO采用迁移学习的方式,迁移ImageNet的前20个卷积层,然后添加3个CNN、两个pool层、2个全连接层,组成YOLO的网络模型。                 

                     

      训练损失函数的分析:Yolo算法将目标检测看成回归问题,所以采用的是均方差损失函数。但是对不同的部分采用了不同的权重值。首先区分定位误差和分类误差。对于定位误差,即边界框坐标预测误差,采用较大的权重  。然后区分不包含目标的边界框与含有目标的边界框的置信度,对于前者,采用较小的权重值  。其它权重值均设为1。然后采用均方误差,其同等对待大小不同的边界框,但是实际上较小的边界框的坐标误差应该要比较大的边界框要更敏感。为了保证这一点,将网络的边界框的宽与高预测改为对其平方根的预测,即预测值变为  。在训练时,如果该单元格内确实存在目标,那么只选择与ground truth的IOU最大的那个边界框来负责预测该目标,而其它边界框认为不存在目标。这样设置的一个结果将会使一个单元格对应的边界框更加专业化,其可以分别适用不同大小,不同高宽比的目标,从而提升模型性能。

                                               

      其中第一项是边界框中心坐标的误差项,  指的是第 i 个单元格存在目标,且该单元格中的第 j 个边界框负责预测该目标。第二项是边界框的高与宽的误差项。第三项是包含目标的边界框的置信度误差项。第四项是不包含目标的边界框的置信度误差项。而最后一项是包含目标的单元格的分类误差项,  指的是第 i 个单元格存在目标。这里特别说一下置信度的target值  ,如果是不存在目标,此时由于 ,那么  。如果存在目标,  ,此时需要确定  ,当然你希望最好的话,可以将IOU取1,这样  ,但是在YOLO实现中,使用了一个控制参数rescore(默认为1),当其为1时,IOU不是设置为1,而就是计算truth和pred之间的真实IOU。不过很多复现YOLO的项目还是取  ,这个差异应该不会太影响结果吧。

     网络预测

      在说明Yolo算法的预测过程之前,这里先介绍一下非极大值抑制算法,NMS算法主要解决的是一个目标被多次检测的问题,如图可以看到人脸被多次检测,但是其实我们希望最后仅仅输出其中一个最好的预测框,那么可以采用NMS算法来实现这样的效果:首先从所有的检测框中找到置信度最大的那个框,然后挨个计算其与剩余框的IOU,如果其值大于一定阈值(重合度过高),那么就将该框剔除;然后对剩余的检测框重复上述过程,直到处理完所有的检测框。

                          

      

      下面就来分析Yolo的预测过程,这里我们不考虑batch,认为只是预测一张输入图片。根据前面的分析,最终的网络输出是  ,但是我们可以将其分割成三个部分:类别概率部分为  ,置信度部分为  ,而边界框部分为  (对于这部分不要忘记根据原始图片计算出其真实值)。然后将前两项相乘(矩阵  乘以  可以各补一个维度来完成  )可以得到类别置信度值为  ,这里总共预测了  个边界框。

       所有的准备数据已经得到了,那么我们先说第一种策略来得到检测框的结果,我认为这是最正常与自然的处理。首先,对于每个预测框根据类别置信度选取置信度最大的那个类别作为其预测标签,经过这层处理我们得到各个预测框的预测类别及对应的置信度值,其大小都是  。一般情况下,会设置置信度阈值,就是将置信度小于该阈值的box过滤掉,所以经过这层处理,剩余的是置信度比较高的预测框。最后再对这些预测框使用NMS算法,最后留下来的就是检测结果。一个值得注意的点是NMS是对所有预测框一视同仁,还是区分每个类别,分别使用NMS。Ng在deeplearning.ai中讲应该区分每个类别分别使用NMS,但是看了很多实现,其实还是同等对待所有的框,我觉得可能是不同类别的目标出现在相同位置这种概率很低吧。

      上面的预测方法应该非常简单明了,但是对于Yolo算法,其却采用了另外一个不同的处理思路(至少从C源码看是这样的),其区别就是先使用NMS,然后再确定各个box的类别。其基本过程如图12所示。对于98个boxes,首先将小于置信度阈值的值归0,然后分类别地对置信度值采用NMS,这里NMS处理结果不是剔除,而是将其置信度值归为0。最后才是确定各个box的类别,当其置信度值不为0时才做出检测结果输出。这个策略不是很直接,但是貌似Yolo源码就是这样做的。Yolo论文里面说NMS算法对Yolo的性能是影响很大的,所以可能这种策略对Yolo更好。但是我测试了普通的图片检测,两种策略结果是一样的。

                           

2. YOLO_V2

      YOLOv2在改进中遵循一个原则:保持检测速度,这也是YOLO模型的一大优势。改进策略如下:

    Batch Normalization

       Batch Normalization可以提升模型收敛速度,而且可以起到一定正则化效果,降低模型的过拟合。在YOLOv2中,每个卷积层后面都添加了Batch Normalization层,并且不再使用droput。使用Batch Normalization后,YOLOv2的mAP提升了2.4%。

    High Resolution Classifier

       目前大部分的检测模型都会在先在ImageNet分类数据集上预训练模型的主体部分(CNN特征提取器),由于历史原因,ImageNet分类模型基本采用大小为 224*224 的图片作为输入,分辨率相对较低,不利于检测模型。所以YOLOv1在采用 224*224 分类模型预训练后,将分辨率增加至 448*448 ,并使用这个高分辨率在检测数据集上finetune。但是直接切换分辨率,检测模型可能难以快速适应高分辨率。所以YOLOv2增加了在ImageNet数据集上使用 448*448 输入来finetune分类网络这一中间过程(10 epochs),这可以使得模型在检测数据集上finetune之前已经适用高分辨率输入。使用高分辨率分类器后,YOLOv2的mAP提升了约4%。

    Convolutional With Anchor Boxes

        在YOLOv1中,输入图片最终被划分为 7*7 网格,每个单元格预测2个边界框。YOLOv1最后采用的是全连接层直接对边界框进行预测,其中边界框的宽与高是相对整张图片大小的,而由于各个图片中存在不同尺度和长宽比(scales and ratios)的物体,YOLOv1在训练过程中学习适应不同物体的形状是比较困难的,这也导致YOLOv1在精确定位方面表现较差。YOLOv2借鉴了Faster R-CNN中RPN网络的先验框(anchor boxes,prior boxes,SSD也采用了先验框)策略。RPN对CNN特征提取器得到的特征图(feature map)进行卷积来预测每个位置的边界框以及置信度(是否含有物体),并且各个位置设置不同尺度和比例的先验框,所以RPN预测的是边界框相对于先验框的offsets值(其实是transform值,详细见Faster R_CNN论文),采用先验框使得模型更容易学习。所以YOLOv2移除了YOLOv1中的全连接层而采用了卷积和anchor boxes来预测边界框。为了使检测所用的特征图分辨率更高,移除其中的一个pool层。在检测模型中,YOLOv2不是采用 448*448 图片作为输入,而是采用 416*416 大小。因为YOLOv2模型下采样的总步长为 32 ,对于 416*416 大小的图片,最终得到的特征图大小为 13*13 ,维度是奇数,这样特征图恰好只有一个中心位置。对于一些大物体,它们中心点往往落入图片中心位置,此时使用特征图的一个中心点去预测这些物体的边界框相对容易些。所以在YOLOv2设计中要保证最终的特征图有奇数个位置。对于YOLOv1,每个cell都预测2个boxes,每个boxes包含5个值:  ,前4个值是边界框位置与大小,最后一个值是置信度(confidence scores,包含两部分:含有物体的概率以及预测框与ground truth的IOU)。但是每个cell只预测一套分类概率值(class predictions,其实是置信度下的条件概率值),供2个boxes共享。YOLOv2使用了anchor boxes之后,每个位置的各个anchor box都单独预测一套分类概率值,这和SSD比较类似(但SSD没有预测置信度,而是把background作为一个类别来处理)。

       使用anchor boxes之后,YOLOv2的mAP有稍微下降(这里下降的原因,我猜想是YOLOv2虽然使用了anchor boxes,但是依然采用YOLOv1的训练方法)。YOLOv1只能预测98个边界框( 7*7*2 ),而YOLOv2使用anchor boxes之后可以预测上千个边界框(  )。所以使用anchor boxes之后,YOLOv2的召回率大大提升,由原来的81%升至88%。

    Dimension Clusters

       在Faster R-CNN和SSD中,先验框的维度(长和宽)都是手动设定的,带有一定的主观性。如果选取的先验框维度比较合适,那么模型更容易学习,从而做出更好的预测。因此,YOLOv2采用k-means聚类方法对训练集中的边界框做了聚类分析。因为设置先验框的主要目的是为了使得预测框与ground truth的IOU更好,所以聚类分析时选用box与聚类中心box之间的IOU值作为距离指标:

     New Network: Darknet-19

        YOLOv2采用了一个新的基础模型(特征提取器),称为Darknet-19,包括19个卷积层和5个maxpooling层,如图4所示。Darknet-19与VGG16模型设计原则是一致的,主要采用 3*3 卷积,采用 2*2 的maxpooling层之后,特征图维度降低2倍,而同时将特征图的channles增加两倍。与NIN(Network in Network)类似,Darknet-19最终采用global avgpooling做预测,并且在 3*3 卷积之间使用 1*1 卷积来压缩特征图channles以降低模型计算量和参数。Darknet-19每个卷积层后面同样使用了batch norm层以加快收敛速度,降低模型过拟合。在ImageNet分类数据集上,Darknet-19的top-1准确度为72.9%,top-5准确度为91.2%,但是模型参数相对小一些。使用Darknet-19之后,YOLOv2的mAP值没有显著提升,但是计算量却可以减少约33%。

     Direct location prediction

      前面讲到,YOLOv2借鉴RPN网络使用anchor boxes来预测边界框相对先验框的offsets。边界框的实际中心位置 (X,Y) ,需要根据预测的坐标偏移值  ,先验框的尺度  以及中心坐标  (特征图每个位置的中心点)来计算:

;但是上面的公式是无约束的,预测的边界框很容易向任何方向偏移,如当  时边界框将向右偏移先验框的一个宽度大小,而当  时边界框将向左偏移先验框的一个宽度大小,因此每个位置预测的边界框可以落在图片任何位置,这导致模型的不稳定性,在训练时需要很长时间来预测出正确的offsets。所以,YOLOv2弃用了这种预测方式,而是沿用YOLOv1的方法,就是预测边界框中心点相对于对应cell左上角位置的相对偏移值,为了将边界框中心点约束在当前cell中,使用sigmoid函数处理偏移值,这样预测的偏移值在(0,1)范围内(每个cell的尺度看做1)。总结来看,根据边界框预测的4个offsets ,可以按如下公式计算出边界框实际位置和大小:

                                                                 

        其中  为cell的左上角坐标,如图5所示,在计算时每个cell的尺度为1,所以当前cell的左上角坐标为 (1,1) 。由于sigmoid函数的处理,边界框的中心位置会约束在当前cell内部,防止偏移过多。而  和  是先验框的宽度与长度,前面说过它们的值也是相对于特征图大小的,在特征图中每个cell的长和宽均为1。这里记特征图的大小为  (在文中是  ),这样我们可以将边界框相对于整张图片的位置和大小计算出来(4个值均在0和1之间):

                                                      

       如果再将上面的4个值分别乘以图片的宽度和长度(像素点值)就可以得到边界框的最终位置和大小了。这就是YOLOv2边界框的整个解码过程。约束了边界框的位置预测值使得模型更容易稳定训练,结合聚类分析得到先验框与这种预测方法,YOLOv2的mAP值提升了约5%。

                                                                    

    Fine-Grained Features

         YOLOv2的输入图片大小为 416*416 ,经过5次maxpooling之后得到 13*13 大小的特征图,并以此特征图采用卷积做预测。 13*13 大小的特征图对检测大物体是足够了,但是对于小物体还需要更精细的特征图(Fine-Grained Features)。因此SSD使用了多尺度的特征图来分别检测不同大小的物体,前面更精细的特征图可以用来预测小物体。YOLOv2提出了一种passthrough层来利用更精细的特征图。YOLOv2所利用的Fine-Grained Features是 26*26大小的特征图(最后一个maxpooling层的输入),对于Darknet-19模型来说就是大小为 26*26*512 的特征图。passthrough层与ResNet网络的shortcut类似,以前面更高分辨率的特征图为输入,然后将其连接到后面的低分辨率特征图上。前面的特征图维度是后面的特征图的2倍,passthrough层抽取前面层的每个 2*2 的局部区域,然后将其转化为channel维度,对于 26*26*512 的特征图,经passthrough层处理之后就变成了 13*13*2048 的新特征图(特征图大小降低4倍,而channles增加4倍,图6为一个实例),这样就可以与后面的 13*13*1024 特征图连接在一起形成 13*13*3072 大小的特征图,然后在此特征图基础上卷积做预测。在YOLO的C源码中,passthrough层称为reorg layer

    Multi-Scale Training

        由于YOLOv2模型中只有卷积层和池化层,所以YOLOv2的输入可以不限于 416*416 大小的图片。为了增强模型的鲁棒性,YOLOv2采用了多尺度输入训练策略,具体来说就是在训练过程中每间隔一定的iterations之后改变模型的输入图片大小。由于YOLOv2的下采样总步长为32,输入图片大小选择一系列为32倍数的值:  ,输入图片最小为 320*320,此时对应的特征图大小为 10*10 (不是奇数了,确实有点尴尬),而输入图片最大为 608*608 ,对应的特征图大小为 19*19 。在训练过程,每隔10个iterations随机选择一种输入图片大小,然后只需要修改对最后检测层的处理就可以重新训练。

                                                

       采用Multi-Scale Training策略,YOLOv2可以适应不同大小的图片,并且预测出很好的结果。在测试时,YOLOv2可以采用不同大小的图片作为输入,在VOC 2007数据集上的效果如下图所示。可以看到采用较小分辨率时,YOLOv2的mAP值略低,但是速度更快,而采用高分辨输入时,mAP值更高,但是速度略有下降,对于 544*544 ,mAP高达78.6%。注意,这只是测试时输入图片大小不同,而实际上用的是同一个模型(采用Multi-Scale Training训练)。

       总结来看,虽然YOLOv2做了很多改进,但是大部分都是借鉴其它论文的一些技巧,如Faster R-CNN的anchor boxes,YOLOv2采用anchor boxes和卷积做预测,这基本上与SSD模型(单尺度特征图的SSD)非常类似了,而且SSD也是借鉴了Faster R-CNN的RPN网络。从某种意义上来说,YOLOv2和SSD这两个one-stage模型与RPN网络本质上无异,只不过RPN不做类别的预测,只是简单地区分物体与背景。在two-stage方法中,RPN起到的作用是给出region proposals,其实就是作出粗糙的检测,所以另外增加了一个stage,即采用R-CNN网络来进一步提升检测的准确度(包括给出类别预测)。而对于one-stage方法,它们想要一步到位,直接采用“RPN”网络作出精确的预测,要因此要在网络设计上做很多的tricks。YOLOv2的一大创新是采用Multi-Scale Training策略,这样同一个模型其实就可以适应多种大小的图片了。

 

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
汽车行业-Mobileye激光雷达技术专利文档资料合集: 100后部障碍检测.pdf 101后部障碍检测.pdf 102后部障碍检测.pdf 103自动车辆导航的稀疏图.pdf 104使用本地重叠地图进行导航.pdf 105基于自由空间确定的导航.pdf 106具有受限约束的机器学习导航发动机.pdf 107自动车辆速度校准.pdf 108循环图像缓冲区.pdf 109使用稳定坐标框架的道路垂直轮廓检测.pdf 10行人碰撞警告系统.pdf 10道路垂直轮廓检测.pdf 110用于识别相关交通灯的.pdf 111基于道路签名的自治导航.pdf 112在SNOW导航.pdf 113基于对其他车辆的预测侵略导航车辆.pdf 114基于识别地标的自主车辆导航.pdf 115用于检测摄像机视野中的障碍的系统和方法.pdf 116带滚动快门的相机的图像失真校正.pdf 117用于检测交通标志的系统和方法.pdf 118基于长期规划的次优立即导航响应.pdf 119具有受限制的约束的训练导航系统.pdf 11使用单个摄像机.pdf 11使用本地重叠地图导航.pdf 121使用可寻址寄存器阵列执行直方图.pdf 121摄像机专注于ADAS.pdf 123用于路缘检测和行人危险评估的系统和方法提供了.pdf 124道路垂直轮廓检测.pdf 126基于检测到的目标车辆的运动来控制主车辆.pdf 127用于检测交通标志的系统和方法.pdf 128用于车道端识别的系统和方法.pdf 129用于检测相机视野中的障碍物的系统和方法.pdf 129远红外和可见图像在汽车应用中增强障碍物检测的融合.pdf 12带滚动快门的相机的图像失真校正.pdf 12用于改善地标位置的系统和方法.pdf 12行人碰撞警告系统.pdf 130用于路缘检测和行人危险评估的系统和方法.pdf 131运动的密集结构.pdf 132道路垂直轮廓检测.pdf 133基于雷达视觉成像的导航.pdf 134芯片系统与图像处理功能.pdf 135图像处理器和处理图像的方法.pdf 136用于检测相机视野中的障碍物的系统和方法.pdf 137车道标记导航的自上而下的改进.pdf 138基于前视摄像头的前进导航.pdf 139用于陷阱检测和行人危险评估的系统和方法.pdf 13为了检测交通标志系统和方法.pdf 13使用单个摄像头检测屏障和护栏.pdf 140用于识别地标的系统和方法.pdf 141用于实现车辆的多段制动轮廓的系统和方法.pdf 142多功能求和机.pdf 143碰撞预警系统.pdf 144用于检测和响应在车辆上交叉横向进行交通的系统和方法.pdf 145用于模制领先车辆的系统和方法.pdf 146用于模制领先车辆的系统和方法.pdf 147用于车辆偏移导航的系统和方法.pdf 148用于将车辆导航到默认车道的系统和方法.pdf 148用于车辆偏移导航的系统和方法.pdf 149用于自主车辆导航的多阈值反应区.pdf 14基于检测到的静止车辆之间的间距来控制主车辆.pdf 14用于车辆.pdf 150用于在驾驶车辆中导航车辆的系统和方法.pdf 151用于模制领先车辆的系统和方法.pdf 152基于图像的转速车辆速度控制.pdf 153基于可识别的地标定位确定车道分配.pdf 154用于检测道路中的低高度物体的系统和方法.pdf 155用于检测交通信号细节的系统和方法.pdf 156用于检测交通灯的系统和方法.pdf 157具有硬件累加器复位的计算机体系结构.pdf 158自适应道路模型经理.pdf 159用于车辆检测和警告潜在碰撞.pdf 15使用候选对象对齐的对象检测.pdf 15用于导航车辆的前向多成像系统.pdf 160PEDESTRIAN碰撞警告系统.pdf 161具有硬件累积器重置的计算机体系结构.pdf 162用于基于检测到的物体制动车辆的系统和方法.pdf 163使用单个摄像机进行障碍物和护栏探测.pdf 164从运动结构进行立体声自动校准.pdf 165沿预测路径的道路轮廓.pdf 166用于上传推荐轨迹的系统和方法.pdf 167超级地标作为导航艾.pdf 168碰撞警告系统.pdf 169碰撞预警系统.pdf 16用于估计.pdf 16用于确定交通灯的状态和细节的系统和方法.pdf 170用于检测相机视野中的障碍物的系统和方法.pdf 171可调节的摄像机支架,用于车辆挡风玻璃.pdf 172道路垂直轮廓检测.pdf 173图像处理地址生成器.pdf 174行人检测.pdf 175STEREO辅助滚动快门.pdf 176道路垂直轮廓检测.pdf 177用于检测摄像机视野中的障碍的系统和方法.pdf 178可调式摄像机安装在车辆挡风玻璃上.pdf 179科
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值