题解:这个题是个无向图判断是否是欧拉路径,然后把这条路径的点的编号进行异或得出最大值。
无向图判断是否为欧拉路径:
1.满足所有点的都是偶点,构成欧拉回路
2.满足有两个点是奇点,剩下点都是偶点,这样这两个奇点一个为起点,一个为终点
最后考虑进行异或得出最大值,考虑异或偶数次相当于没改变一切,只考虑异或奇数次的点,那么次数如何算呢?(度数+1)/2,不就是经过这个点的次数么,最后欧拉路径得多考虑一下,因为欧拉路径起点不唯一 ,所以进行枚举下,最后得出最大值,终于做到图了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1e5+10;
int n,m;
int a[maxn];
int degree[maxn];
int main()
{
int t;
scanf("%d",&t);
while(t--){
memset(degree,0,sizeof(degree));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
int u,v;
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&v);
degree[u]++;
degree[v]++;
}
int cnt=0;
for(int i=1;i<=n;i++){
if(degree[i]&1){
cnt++;
}
}
if(cnt!=0&&cnt!=2){
printf("Impossible\n");
continue;
}
int ans=0;
for(int i=1;i<=n;i++){
degree[i]=(degree[i]+1)>>1;
if(degree[i]&1){
ans^=a[i];
}
}
int tmp=ans;
if(cnt==0){
for(int i=1;i<=n;i++){
ans=max(ans,tmp^a[i]);
}
}
printf("%d\n",ans);
}
return 0;
}