前言
在人工智能的浪潮中,语音识别技术正逐渐成为我们日常生活中不可或缺的一部分。随着 OpenAI 的 Whisper 模型的推出,语音转文本的过程变得前所未有的简单和高效。无论是从 YouTube 视频中提取信息,还是将播客内容转化为文本,Whisper 都能帮助我们轻松实现这一目标。今天,我们将深入探讨 Whisper 的强大功能,并提供详细的使用教程,让你能够快速上手这一技术。🌟
文章目录
一、Whisper 简介
Whisper 是 OpenAI 开发的一款先进的语音识别系统,经过 680,000 小时的多语言和多任务监督数据训练,具备了强大的鲁棒性。它不仅支持多种语言的转录,还能将这些语言翻译成英语。与其他 AI 模型不同,Whisper 是一个开源模型,开发者可以自由使用和修改。
Whisper 的优势
- 开源免费:开发者可以自由使用和修改代码。
- 多语言支持:包括中文、英文等多种语言。
- 高准确率:在多种场景下表现优于市面上许多音频转文字工具。
二、Whisper 可用的模型和语言
Whisper 提供了五种不同尺寸的模型,适用于不同的应用场景。以下是可用型号及其大致的内存需求和相对速度:
- tiny:适合快速测试,内存占用小。
- base:适合一般应用,速度和准确性平衡。
- small:适合对准确性有一定要求的应用。
- medium:适合需要较高准确率的场景。
- large:适合对准确性要求极高的应用,但需要较大的显存。
语言支持
Whisper 支持多种语言的转录,具体性能因语言而异。通过使用 Fleurs 数据集,Whisper 在不同语言上的表现可以通过单词错误率(WER)进行评估,数字越小,性能越好。
三、开源 Whisper 本地转录
3.1、安装 pytube 库
在开始使用 Whisper 进行转录之前,我们需要安装 pytube
库,以便从 YouTube 下载音频。
pip install --upgrade pytube
3.2、下载音频 MP4 文件
以“100 秒学习 Python”视频为例,视频地址为:https://www.youtube.com/watch?v=x7X9w_GIm1s。
import pytube
video = "https://www.youtube.com/watch?v=x7X9w_GIm1s"
data = pytube.YouTube(video)
audio = data.streams.get_audio_only()
audio.download()
3.3、安装 Whisper 库
接下来,我们需要安装 Whisper 库:
pip install git+https://github.com/openai/whisper.git -q
加载模型并转录音频文件:
import whisper
model = whisper.load_model("base")
text = model