【OpenAI】第六节(语音生成与语音识别技术)从 ChatGPT 到 Whisper 的全方位指南

前言

在人工智能的浪潮中,语音识别技术正逐渐成为我们日常生活中不可或缺的一部分。随着 OpenAI 的 Whisper 模型的推出,语音转文本的过程变得前所未有的简单和高效。无论是从 YouTube 视频中提取信息,还是将播客内容转化为文本,Whisper 都能帮助我们轻松实现这一目标。今天,我们将深入探讨 Whisper 的强大功能,并提供详细的使用教程,让你能够快速上手这一技术。🌟

一、Whisper 简介

Whisper 是 OpenAI 开发的一款先进的语音识别系统,经过 680,000 小时的多语言和多任务监督数据训练,具备了强大的鲁棒性。它不仅支持多种语言的转录,还能将这些语言翻译成英语。与其他 AI 模型不同,Whisper 是一个开源模型,开发者可以自由使用和修改。

Whisper 的优势

  • 开源免费:开发者可以自由使用和修改代码。
  • 多语言支持:包括中文、英文等多种语言。
  • 高准确率:在多种场景下表现优于市面上许多音频转文字工具。
    在这里插入图片描述

二、Whisper 可用的模型和语言

Whisper 提供了五种不同尺寸的模型,适用于不同的应用场景。以下是可用型号及其大致的内存需求和相对速度:

  • tiny:适合快速测试,内存占用小。
  • base:适合一般应用,速度和准确性平衡。
  • small:适合对准确性有一定要求的应用。
  • medium:适合需要较高准确率的场景。
  • large:适合对准确性要求极高的应用,但需要较大的显存。

语言支持

Whisper 支持多种语言的转录,具体性能因语言而异。通过使用 Fleurs 数据集,Whisper 在不同语言上的表现可以通过单词错误率(WER)进行评估,数字越小,性能越好。

三、开源 Whisper 本地转录

3.1、安装 pytube 库

在开始使用 Whisper 进行转录之前,我们需要安装 pytube 库,以便从 YouTube 下载音频。

pip install --upgrade pytube

3.2、下载音频 MP4 文件

以“100 秒学习 Python”视频为例,视频地址为:https://www.youtube.com/watch?v=x7X9w_GIm1s

import pytube

video = "https://www.youtube.com/watch?v=x7X9w_GIm1s"
data = pytube.YouTube(video)
audio = data.streams.get_audio_only()
audio.download()

3.3、安装 Whisper 库

接下来,我们需要安装 Whisper 库:

pip install git+https://github.com/openai/whisper.git -q

加载模型并转录音频文件:

import whisper

model = whisper.load_model("base")
text = model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XinZong-千鑫

在线乞讨,行行好吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值