HSV图示:
cv2:calcHist(images; channels; mask; histSize; ranges[; hist[; accumulate]])
- images: 原图像(图像格式为uint8 或float32)。当传入函数时应该
用中括号[] 括起来,例如:[img]。 - channels: 同样需要用中括号括起来,它会告诉函数我们要统计那幅图
像的直方图。如果输入图像是灰度图,它的值就是[0];如果是彩色图像
的话,传入的参数可以是[0],[1],[2] 它们分别对应着通道B,G,R。 - mask: 掩模图像。要统计整幅图像的直方图就把它设为None。但是如
果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并
使用它。(后边有例子) - histSize:BIN 的数目。也应该用中括号括起来,例如:[256]。
- ranges: 像素值范围,通常为[0,256]
如果要绘制颜色直方图的话,我们首先需要将图像的颜色空间从BGR 转换到HSV。(记住,计算一维直方图,要从BGR 转换到HSV)。计算2D 直方图,函数的参数要做如下修改:
• channels=[0,1] 因为我们需要同时处理H 和S 两个通道。
• bins=[180,256]H 通道为180,S 通道为256。
• range=[0,180,0,256]H 的取值范围在0 到180,S 的取值范围在0 到256。
Numpy 同样提供了绘制2D 直方图的函数:np.histogram2d():
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('5.jpg')
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
hist, xbins, ybins = np.histogram2d(h.ravel(),s.ravel(),[180,256],[[0,180],[0,256]])
OpenCV 中的2D 直方图:
import cv2
import numpy as np
img = cv2.imread('5.jpg')
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
绘制2D 直方图:
方法1:使用cv2.imshow() 我们得到结果是一个180x256 的两维数组。所以我们可以使用函数cv2.imshow() 来显示它。但是这是一个灰度图,除非我们知道不同颜色H 通道的值,否则我们根本就不知道那到底代表什么颜色。
方法2:使用Matplotlib() 我们还可以使用函数matplotlib.pyplot.imshow()来绘制2D 直方图,再搭配上不同的颜色图(color_map)。这样我们会对每个点所代表的数值大小有一个更直观的认识。但是跟前面的问题一样,你还是不知道那个数代表的颜色到底是什么。
注意:在使用这个函数时,要记住设置插值参数为nearest。
plt.imshow(hist,interpolation = 'nearest')
plt.show()
下面是输入图像和颜色直方图。X 轴显示S 值,Y 轴显示H 值。
直方图反向投影:
它可以用来做图像分割,或者在图像中找寻我们感兴趣的部分。简单来说,它会输出与输入图像(待搜索)同样大小的图像,其中的每一个像素值代表了输入图像上对应点属于目标对象的概率。用更简单的话来解释,输出图像中像素值越高(越白)的点就越可能代表我们要搜索的目标(在输入图像所在的位置)。这是一个直观的解释。
我们应该怎样来实现这个算法呢?首先我们要为一张包含我们要查找目标
的图像创建直方图(在我们的示例中,我们要查找的是草地,其他的都不要)。我们要查找的对象要尽量占满这张图像(换句话说,这张图像上最好是有且仅有我们要查找的对象)。最好使用颜色直方图,因为一个物体的颜色要比它的灰度能更好的被用来进行图像分割与对象识别。接着我们再把这个颜色直方图投影到输入图像中寻找我们的目标,也就是找到输入图像中的每一个像素点的像素值在直方图中对应的概率,这样我们就得到一个概率图像,最后设置适当的阈值对概率图像进行二值化,就这么简单。
OpenCV 中的反向投影:
OpenCV 提供的函数cv2.calcBackProject() 可以用来做直方图反向投影。它的参数与函数cv2.calcHist 的参数基本相同。其中的一个参数是我们要查找目标的直方图。同样再使用目标的直方图做反向投影之前我们应该先对其做归一化处理。返回的结果是一个概率图像,我们再使用一个圆盘形卷积核对其做卷操作,最后使用阈值进行二值化。原理图:
import cv2
import numpy as np
roi = cv2.imread('tar.jpg')
hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV)
target = cv2.imread('roi.jpg')
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
# calculating object histogram
roihist = cv2.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
# normalize histogram and apply backprojection
# 归一化:原始图像,结果图像,映射到结果图像中的最小值,最大值,归一化类型
#cv2.NORM_MINMAX 对数组的所有值进行转化,使它们线性映射到最小值和最大值之间
# 归一化之后的直方图便于显示,归一化之后就成了0 到255 之间的数了。
cv2.normalize(roihist,roihist,0,255,cv2.NORM_MINMAX)
dst = cv2.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# Now convolute with circular disc
# 此处卷积可以把分散的点连在一起
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
dst=cv2.filter2D(dst,-1,disc)
# threshold and binary AND
ret,thresh = cv2.threshold(dst,50,255,0)
# 别忘了是三通道图像,因此这里使用merge 变成3 通道
thresh = cv2.merge((thresh,thresh,thresh))
# 按位操作
res = cv2.bitwise_and(target,thresh)
res = np.hstack((target,thresh,res))
cv2.imwrite('res.jpg',res)
# 显示图像
cv2.imshow('1',res)
cv2.waitKey(0)
下面是我使用的一幅图像。我使用图中蓝色矩形中的区域作为取样对象,
再根据这个样本搜索图中所有的类似区域(草地)。
这个例子没有模拟出来,后期再进行研究。