高等数学笔记(下上)

向量代数与空间解析几何

方向角
一个向量 v ⃗ = ( x , y , z ) \vec v=(x,y,z) v =(x,y,z)和各个坐标轴的夹角叫做方向角,记作 α , β , γ \alpha,\beta,\gamma α,β,γ,余弦叫做方向余弦.
取 x 轴的单位向量 x ⃗ = ( 1 , 0 , 0 ) ,则 v ⃗ x ⃗ = ∣ v ⃗ ∣ ∣ x ⃗ ∣ cos ⁡ < v ⃗ , x ⃗ > cos ⁡ < v ⃗ , x ⃗ > = x ∣ v ∣ 容易得到 cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 取x轴的单位向量\vec x=(1,0,0),则\vec v\vec x=|\vec v||\vec x|\cos<\vec v, \vec x> \cos<\vec v, \vec x>=\frac{x}{|v|}\\ 容易得到\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1 x轴的单位向量x =(1,0,0),则v x =v ∣∣x cos<v ,x >cos<v ,x >=vx容易得到cos2α+cos2β+cos2γ=1
二维空间坐标轴被分成4个象限,三维空间坐标轴被分成8个卦限。(太极生两仪,两仪生四象,四象生八卦)
平面的表示

  1. 点法式:因为空间中过一个点只能且只能作一个平面垂直于已知直线,因此空间中通过一个点和一个非零向量,可以唯一确定一个平面。使用点法式可以得到平面方程方程:
    给定一个点 M 0 = ( x 0 , y 0 , z 0 ) M_0=(x_0,y_0,z_0) M0=(x0,y0,z0)和非零向量 n ⃗ = ( A , B , C ) \vec n=(A,B,C) n =(A,B,C),则对于平面上的任意一点 M = ( x , y , z ) M=(x,y,z) M=(x,y,z),都满足 M 0 M → = ( x − x 0 , y − y 0 , z − z 0 ) \overrightarrow{M_0M}=(x-x_0,y-y_0,z-z_0) M0M =(xx0,yy0,zz0),都有
    M 0 M → ⋅ n ⃗ = 0 ,即 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 \overrightarrow{M_0M}\cdot\vec n=0,即A(x-x_0)+B(y-y_0)+C(z-z_0)=0 M0M n =0,即A(xx0)+B(yy0)+C(zz0)=0
  2. 平面一般方程: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,其法向量为 n ⃗ = ( A , B , C ) \vec n=(A,B,C) n =(A,B,C). 法向量的说明,任取平面上两点 M 0 = ( x 0 , y 0 , z 0 ) M_0=(x_0,y_0,z_0) M0=(x0,y0,z0) M 1 = ( x 1 , y 1 , z 1 ) M_1=(x_1,y_1,z_1) M1=(x1,y1,z1),有
  3. { A x 0 + B y 0 + C z 0 + D = 0 A x 1 + B y 1 + C z 1 + D = 0    ⟹    A ( x 0 − x 1 ) + B ( y 0 − y 1 ) + C ( z 0 − z 1 ) = 0 即 M 0 M 1 → ⋅ n ⃗ = 0 \begin{cases}Ax_0+By_0+Cz_0+D=0\\Ax_1+By_1+Cz_1+D=0\end{cases}\\ \implies A(x_0-x_1)+B(y_0-y_1)+C(z_0-z_1)=0\\ 即\overrightarrow{M_0M_1}\cdot \vec n=0 {Ax0+By0+Cz0+D=0Ax1+By1+Cz1+D=0A(x0x1)+B(y0y1)+C(z0z1)=0M0M1 n =0

直线的表示

  1. 空间直线可以看做是两个空间平面的交线,空间直线的一般方程组可以表示为
    { A x 1 + B y 1 + C z 1 + D 1 = 0 A x 2 + B y 2 + C z 2 + D 2 = 0 \begin{cases} Ax_1+By_1+Cz_1+D_1=0\\ Ax_2+By_2+Cz_2+D_2=0\\ \end{cases} {Ax1+By1+Cz1+D1=0Ax2+By2+Cz2+D2=0
  2. 如果一个非零向量平行于一条直线,则这个向量就叫做直线的方向向量。当直线上一点 M 0 = ( x 0 , y 0 , z 0 ) M_0=(x_0,y_0,z_0) M0=(x0,y0,z0)和方向向量 n ⃗ = ( m , n , p ) \vec n=(m,n,p) n =(m,n,p)确定后,一条直线就确定了。可以通过以下方程来确定:
    x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} mxx0=nyy0=pzz0
    这个方程叫做点向式方程或者对称式方程。
  3. 如果对称是方程中的比值为 t t t,则有
    { x = x 0 + m t y = y 0 + n t z = z 0 + p t \begin{cases} x=x_0+mt\\ y=y_0+nt\\ z=z_0+pt \end{cases} x=x0+mty=y0+ntz=z0+pt
    这个就是直线的参数式方程。
    一条直线的各种类型的方程,表示都不是唯一的。对于直线的一般方程组,各种表示的关系是围绕直线旋转过程中的两个不重合平面。给定一条直线和一个平面的法向量,则这个平面就是唯一的,因为法向量确定了平面旋转的角度;对于直线的点向式和参数式方程,方向向量无穷多个,但是都是平行的,但是点可以在直线上任意取。
    两者的相互转换:1)点向式->一般式:点向式已知一个点和方向向量,可以从向量上再求取一点,然后直线外任取一点,可以得到平面方程,以此类推,可以得到另一平面方程,两者联立即是一般式方程2)一般式->点向式:三个自由变量,两个方程,求解可以得到一个方向向量,指定一个维度,可以得到一个点,即可确定点向式方程。
    平面是通过点法式定义的,实际上是通过计算和 M 0 M_0 M0的相对位置,将平面平移到了过原点的位置。通过法向量来定义,在矩阵理论里对应的是零空间。即对于法向量 n ⃗ \vec n n 和平面上任意一点 M = ( x , y , z ) M=(x,y,z) M=(x,y,z)和固定点 M 0 = ( x 0 , y 0 , z 0 ) M_0=(x_0,y_0,z_0) M0=(x0,y0,z0),有 A n ⃗ = 0 ⃗ A\vec n=\vec 0 An =0 ,其中A只有一列, A = [ x − x 0 , y − y 0 , z − z 0 ] T A=[x-x_0,y-y_0,z-z_0]^T A=[xx0,yy0,zz0]T,也就是平面的方程是A的0空间。但是普通平面不一定过0点,但是零空间一定是过了零点的,但是这个方程直接得到了任意平面的方程。愿意实际上是由于A中通过 − x 0 , − y 0 , − z 0 -x_0,-y_0,-z_0 x0,y0,z0将平面作了平移,平移到了原点。实际平面也可以通过点向式定义,这种情况下对应的解释是平面是两个线性无关的向量 v 1 , v 2 v_1,v_2 v1,v2的生成空间 S p a n { v 1 , v 2 } ,即 u = a v 1 + b v 2 Span\{v_1,v_2\},即u=av_1+bv_2 Span{v1,v2},即u=av1+bv2
    { x − x 0 = a ( x 1 − x 0 ) + b ( x 2 − x 0 ) y − y 0 = a ( y 1 − y 0 ) + b ( y 2 − y 0 ) z − z 0 = a ( z 1 − z 0 ) + b ( z 2 − z 0 ) \begin{cases} x-x_0=a(x_1-x_0)+b(x_2-x_0)\\ y-y_0=a(y_1-y_0)+b(y_2-y_0)\\ z-z_0=a(z_1-z_0)+b(z_2-z_0)\\ \end{cases} xx0=a(x1x0)+b(x2x0)yy0=a(y1y0)+b(y2y0)zz0=a(z1z0)+b(z2z0)
    方程首先通过 − x 0 -x_0 x0等将平面平移到了过原点的平面。方程中有 a , b a,b a,b两个未知数, x , y , z x,y,z x,y,z三个自由变量,可以消去 a , b a,b a,b两个变量,同时得到 x , y , z x,y,z x,y,z的关系。只是求解比较复杂一些,可以使用sympy求得通解。以上也可以认为是平面的参数方程。
    直线是通过点向式来定义的,是不是也能通过点法式定义?

多元函数微分法及其应用

多元函数的极限

极限 设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为 D D D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的聚点. 如果存在常数 A A A,对于任意的正数 ϵ \epsilon ϵ,总存在正数 δ \delta δ,使得当店 P ∈ D ∣ U ( P 0 , δ ) P\in D|U(P_0,\delta) PDU(P0,δ)都有
∣ f ( P ) ∣ = ∣ f ( x , y ) − A ∣ < ϵ |f(P)|=|f(x,y)-A|<\epsilon f(P)=f(x,y)A<ϵ
成立,那么就称常数 A A A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)\to(x_0,y_0) (x,y)(x0,y0)时的极限。记作
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim_{(x,y)\to(x_0,y_0)}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A
f ( x , y ) → A ( ( x , y ) → ( x 0 , y 0 ) ) ) f(x,y)\to A((x,y)\to(x_0,y_0))) f(x,y)A((x,y)(x0,y0)))

也记作
lim ⁡ P → P 0 f ( P ) = A \lim_{P\to P_0}f(P)=A PP0limf(P)=A
f ( P ) → A ( P → P 0 ) f(P)\to A(P\to P_0) f(P)A(PP0)
为了区别于一元函数极限,我们把二元函数的极限叫做二重极限。

连续 设二元函数 f ( x , y ) f(x,y) f(x,y)的定义域为 D D D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的聚点,且 P 0 ∈ D P_0\in D P0D. 如果
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0) (x,y)(x0,y0)limf(x,y)=f(x0,y0)
则称函数 f f f P 0 P_0 P0连续。

偏导数

偏导数反映的是函数沿坐标轴方向的变化率。

全微分

定义 设函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)的某邻域内有定义,如果函数在点 ( x , y ) (x,y) (x,y)的全增量
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x, y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)
可表示为
Δ z = A Δ x + B Δ y + ο ( ρ ) \Delta z =A\Delta x+B\Delta y+\omicron(\rho) Δz=AΔx+BΔy+ο(ρ)
其中 A 和 B A和B AB不依赖于 Δ x 和 Δ y 而仅与 x 和 y 有关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \Delta x和\Delta y而仅与x和y有关,\rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ΔxΔy而仅与xy有关,ρ=(Δx)2+(Δy)2 ,那么称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,而 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分,记作 d z dz dz,即
d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy

定理1(必要条件) 如果函数 f ( x , y ) 在点 ( x , y ) 可微分,那么该函数在点 ( x , y ) 的偏导数 ∂ z ∂ x 与 ∂ z ∂ y f(x,y)在点(x,y)可微分,那么该函数在点(x,y)的偏导数\frac{\partial z}{\partial x}与\frac{\partial z}{\partial y} f(x,y)在点(x,y)可微分,那么该函数在点(x,y)的偏导数xzyz必定存在,且函数 z = f ( x , y ) 在点 ( x , y ) z=f(x,y)在点(x,y) z=f(x,y)在点(x,y)的全微分为
d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y dz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y dz=xzΔx+yzΔy

定理2(充分条件) 如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x , ∂ z ∂ y 在点 ( x , y ) \frac{\partial z}{\partial x},\frac{\partial z}{\partial y}在点(x,y) xz,yz在点(x,y)连续,那么函数在该点可微分

全微分可用于近似计算,例如计算 1.0 1 2.04 1.01^{2.04} 1.012.04可以考察函数 z = f ( x , y ) = x y z=f(x,y)=x^y z=f(x,y)=xy ( 1 , 2 ) (1,2) (1,2)处的全微分。使用多元函数泰勒公式可以得到更精确的结果。

多元复合函数求导法则

一元函数与多元函数复合的情形
定理1 如果函数 u = φ ( t ) u=\varphi(t) u=φ(t) v = ψ ( t ) v=\psi(t) v=ψ(t)都在点 t t t可导,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在对应点 ( u , v ) (u,v) (u,v)具有连续偏导数,那么复合函数 z = f [ φ ( t ) , ψ ( t ) ] z=f[\varphi(t),\psi(t)] z=f[φ(t),ψ(t)]在点 t t t可导,且有
d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt} dtdz=uzdtdu+vzdtdv
多元函数与多元函数复合的情形
定理2 如果函数 u = φ ( x , y ) u=\varphi(x,y) u=φ(x,y) v = ψ ( x , y ) v=\psi(x,y) v=ψ(x,y)都在点 ( x , y ) (x,y) (x,y)具有对 x x x及对 y y y的偏导数,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在点 ( u , v ) (u,v) (u,v)具有连续偏导数,那么复合函数 z = f [ φ ( x , y ) , ψ ( x , y ) ] z=f[\varphi(x,y),\psi(x,y)] z=f[φ(x,y),ψ(x,y)]在点 ( x , y ) (x,y) (x,y)的两个偏导数都存在,且有
∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x   ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\\ \space\\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} xz=uzxu+vzxv yz=uzyu+vzyv

方向导数与梯度

定义:设 l l l x O y xOy xOy平面上以 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为始点的一条射线, e l = ( c o s α , c o s β ) \bold{e}_l=(cos\alpha, cos\beta) el=(cosα,cosβ)是与 l l l同方向的单位向量. 射线 l l l的参数方程为
{ x = x 0 + t c o s α , y = y + 0 + t c o s β ( t ≥ 0 ) \begin{cases} x=x_0+t cos\alpha,\\ y=y+0+ t cos\beta \end{cases}(t\ge 0) {x=x0+tcosα,y=y+0+tcosβ(t0).
设函数 x = f ( x , y ) x=f(x,y) x=f(x,y)在点 P 0 P_0 P0的某个邻域 U ( P 0 ) U(P_0) U(P0)内有定义, P ( x 0 + t c o s α , y 0 + t c o s β ) P(x_0+t cos\alpha, y_0+t cos\beta) P(x0+tcosα,y0+tcosβ) l l l上另一点,且 P ∈ U ( P 0 ) P \in U(P_0) PU(P0). 如果函数增量 f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) f(x_0+t cos\alpha, y_0+t cos\beta)-f(x_0, y_0) f(x0+tcosα,y0+tcosβ)f(x0,y0) P P P P 0 P_0 P0的距离 ∣ P P 0 ∣ = t |PP_0|=t PP0=t的比值
f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \frac {f(x_0+t cos\alpha, y_0+t cos\beta)-f(x_0, y_0)}t tf(x0+tcosα,y0+tcosβ)f(x0,y0)
当 P 沿着 l 趋于 P 0 ( 即 t → 0 + ) 当P沿着l趋于P_0(即t\to 0^+) P沿着l趋于P0(t0+)时的极限存在,那么称此极限为函数 f ( x , y ) 在点 P 0 沿方向 l f(x,y)在点P_0沿方向l f(x,y)在点P0沿方向l的方向导数,记作 ∂ f ∂ l ∣ ( x 0 , y 0 ) ,即 \frac{\partial f}{\partial l}|_{(x_0,y_0)},即 lf(x0,y0),即
∂ f ∂ l ∣ ( x 0 , y 0 ) = lim ⁡ t → 0 + f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \left.\frac{\partial f}{\partial l}\right|_{(x_0,y_0)}=\lim_{t\to 0^+}\frac {f(x_0+t cos\alpha, y_0+t cos\beta)-f(x_0, y_0)}t lf (x0,y0)=t0+limtf(x0+tcosα,y0+tcosβ)f(x0,y0)
从方向导数的定义可知,方向导数 ∂ f ∂ l ∣ ( x 0 , y 0 ) \frac{\partial f}{\partial l}|_{(x_0,y_0)} lf(x0,y0)就是函数 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处沿方向 l l l的变化率. 若函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的偏导数存在, e l = i = ( 1 , 0 ) \bold e_l=\bold{i}=(1,0) el=i=(1,0),则
∂ f ∂ l ∣ ( x 0 , y 0 ) = lim ⁡ t → 0 + f ( x 0 + t c o s α , y 0 ) − f ( x 0 , y 0 ) t = f x ( x 0 , y 0 ) \left.\frac{\partial f}{\partial l}\right|_{(x_0,y_0)}=\lim_{t\to 0^+}\frac {f(x_0+t cos\alpha, y_0)-f(x_0, y_0)}t = f_x(x_0,y_0) lf (x0,y0)=t0+limtf(x0+tcosα,y0)f(x0,y0)=fx(x0,y0)
又若 e l = j = ( 0 , 1 ) \bold e_l=\bold{j}=(0,1) el=j=(0,1),则
∂ f ∂ l ∣ ( x 0 , y 0 ) = lim ⁡ t → 0 + f ( x 0 , y 0 ) − f ( x 0 , y 0 + t c o s β ) t = f y ( x 0 , y 0 ) \left.\frac{\partial f}{\partial l}\right|_{(x_0,y_0)}=\lim_{t\to 0^+}\frac {f(x_0, y_0)-f(x_0, y_0+t cos\beta)}t = f_y(x_0,y_0) lf (x0,y0)=t0+limtf(x0,y0)f(x0,y0+tcosβ)=fy(x0,y0)
但反之,若 e l = i \bold e_l=i el=i ∂ z ∂ l ∣ ( x 0 , y 0 ) \frac{\partial z}{\partial l}|_{(x_0,y_0)} lz(x0,y0)存在,则 ∂ z ∂ x ∣ ( x 0 , y 0 ) \frac{\partial z}{\partial x}|_{(x_0,y_0)} xz(x0,y0)未必存在.例如, z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 在点 O ( 0 , 0 ) O(0,0) O(0,0)处沿 l = i l=\bold i l=i方向的方向导数 ∂ z ∂ l ∣ ( 0 , 0 ) = 1 \frac{\partial z}{\partial l}|_{(0,0)}=1 lz(0,0)=1,而偏导数 ∂ z ∂ x ∣ ( 0 , 0 ) \frac{\partial z}{\partial x}|_{(0,0)} xz(0,0)不存在.

梯度
与方向导数有关联的一个概念是函数的梯度.在二元函数情形,设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在平面区域 D D D内具有一阶连续偏导数,则对于每一点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D都可定出一个向量
f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j f_x(x_0,y_0)\bold i+f_y(x_0,y_0)\bold j fx(x0,y0)i+fy(x0,y0)j,
这向量称为函数 f ( x , y ) 在点 P 0 ( x 0 , y 0 ) f(x,y)在点P_0(x_0,y_0) f(x,y)在点P0(x0,y0)的梯度,记作 g r a d f ( x 0 , y 0 ) \bold{grad}f(x_0,y_0) gradf(x0,y0) ∇ f ( x 0 , y 0 ) \nabla f(x_0,y_0) f(x0,y0),即
g r a d f ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j grad f(x_0,y_0)=\nabla f(x_0,y_0)=f_x(x_0,y_0)\bold i+f_y(x_0,y_0)\bold j gradf(x0,y0)=f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j.
其中 ∇ = ∂ ∂ x i + ∂ ∂ y j \nabla=\frac{\partial}{\partial x}\bold i+\frac{\partial}{\partial y}\bold j =xi+yj称为(二维的)向量微分算子或者Nabla算子, ∇ f = ∂ f ∂ x i + ∂ f ∂ y j \nabla f=\frac{\partial f}{\partial x}\bold i+\frac{\partial f}{\partial y}\bold j f=xfi+yfj

如果函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)可微分, e l = ( c o s α , c o s β ) \bold e_l=(cos\alpha, cos\beta) el=(cosα,cosβ)是与方向l同向的单位向量,那么
∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β = g r a d f ( x 0 , y 0 ) ⋅ e l = ∣ g r a d f ( x 0 , y 0 ) ∣ c o s θ \begin{aligned} \left.\frac{\partial f}{\partial l}\right|_{(x_0,y_0)} &=f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta\\ &=\bold{grad}f(x_0,y_0)\cdot \bold{e}_l=|\bold {grad}f(x_0,y_0)|cos\theta \end{aligned} lf (x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ=gradf(x0,y0)el=gradf(x0,y0)cosθ
其中 θ = ( g r a d f ( x 0 , y 0 ) , e l ^ ) \theta = (\widehat{\bold{grad}f(x_0,y_0), \bold{e}_l}) θ=(gradf(x0,y0),el )
这一关系式表明了函数在一点的梯度与函数在这点的方向导数间的关系,特别,由这关系可知:

  1. θ = 0 \theta=0 θ=0,即方向 e l 与梯度 g r a d f ( x 0 , y 0 ) \bold{e}_l与梯度\bold{grad}f(x_0,y_0) el与梯度gradf(x0,y0)的方向相同时,函数 f ( x , y ) f(x,y) f(x,y)增加最快,此时函数在这个方向的方向导数达到最大值,这个最大值就是梯度 g r a d f ( x 0 , y 0 ) \bold{grad}f(x_0,y_0) gradf(x0,y0)的模;
  2. θ = π \theta=\pi θ=π,即方向 e l 与梯度 g r a d f ( x 0 , y 0 ) \bold{e}_l与梯度\bold{grad}f(x_0,y_0) el与梯度gradf(x0,y0)的方向相反时,函数 f ( x , y ) f(x,y) f(x,y)减少最快,此时函数在这个方向的方向导数达到最小值,这个最大值就是梯度 g r a d f ( x 0 , y 0 ) \bold{grad}f(x_0,y_0) gradf(x0,y0)的模的相反数;
  3. θ = π 2 \theta=\frac{\pi} 2 θ=2π,即方向 e l 与梯度 g r a d f ( x 0 , y 0 ) \bold{e}_l与梯度\bold{grad}f(x_0,y_0) el与梯度gradf(x0,y0)的方向正交时,函数 f ( x , y ) f(x,y) f(x,y)的变化率为0.

一般来说,二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在几何上表示一个曲面,这个曲面被平面 z = c ( c 为常数 ) z=c(c为常数) z=c(c为常数)所截得的曲线 L L L的方程为
{ z = f ( x , y ) z = c \begin{cases} z=f(x,y)\\ z=c \end{cases} {z=f(x,y)z=c
这条曲线 L 在 x O y L在xOy LxOy面上的投影是一条平面曲线 L ∗ L^* L,他在 x O y xOy xOy平面直角坐标系中的方程为 f ( x , y ) = c f(x,y)=c f(x,y)=c.
在这里插入图片描述

对于曲线 L ∗ L^* L上的一切点,已给函数的函数值都是 c c c,所以我们成平面曲线 L ∗ L^* L为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的等值线。
f x , f y f_x,f_y fx,fy不同时为零,则等值线 f ( x , y ) = c f(x,y)=c f(x,y)=c上任意一点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处的一个单位法向量为
n = 1 f x 2 ( x 0 , y 0 ) + f y 2 ( x 0 , y 0 ) ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ) = ∇ f ( x 0 , y 0 ) ∣ ∇ f ( x 0 , y 0 ) ∣ \begin{aligned} \bold{n}&=\frac{1}{\sqrt{f_x^2(x_0,y_0)+f_y^2(x_0,y_0)}}(f_x(x_0,y_0),f_y(x_0,y_0))\\ &=\frac{\nabla f(x_0,y_0)}{|\nabla f(x_0,y_0)|} \end{aligned} n=fx2(x0,y0)+fy2(x0,y0) 1(fx(x0,y0),fy(x0,y0))=∣∇f(x0,y0)f(x0,y0)
这表明函数 f ( x , y ) f(x,y) f(x,y)在一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)梯度 ∇ f ( x 0 , y 0 ) \nabla f(x_0,y_0) f(x0,y0)的方向就是等值线 f ( x , y ) = c f(x,y)=c f(x,y)=c在这点的法线方向 n \bold{n} n,而梯度的模 ∣ ∇ f ( x 0 , y 0 ) ∣ |\nabla f(x_0,y_0)| ∣∇f(x0,y0)就是沿这个法线方向的方向导数 ∂ f ∂ n \frac{\partial f}{\partial n} nf,于是有
∇ f ( x , 0 , y 0 ) = ∂ f ∂ n n \nabla f(x,_0,y_0)=\frac{\partial f}{\partial n}\bold{n} f(x,0,y0)=nfn
补充:这个也是好理解的,因为在等值线方向上,函数变化率为0,和梯度夹角为 π 2 \frac{\pi}2 2π,即垂直,所以等值线的法向量就是梯度。

这里对梯度的引入逻辑比较神奇。是先定义了一个概念,然后证明,梯度是多元函数增长最快的方向,你咋这么能呢?随便定义一个概念,发现增长最快?更好理解的方式是继续前面介绍的方向导数,探讨多元函数延哪个方向增长最快,发现是各个一阶偏导构成的单位向量的方向,然后,把这个向量定义为梯度,引入nabla算子。

二元函数泰勒公式

定理 z = f ( x , y ) 在点 ( x 0 , y 0 ) z=f(x,y)在点(x_0,y_0) z=f(x,y)在点(x0,y0)的某一邻域内连续且有 ( n + 1 ) (n+1) (n+1)阶连续偏导数, ( x 0 + h , y 0 + k ) (x_0+h,y_0+k) (x0+h,y0+k)为此邻域内任意一点,则有
f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 ) + ( h ∂ ∂ x + k ∂ ∂ y ) f ( x 0 , y 0 ) + 1 2 ! ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 , y 0 ) + . . . + 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k ) ( 0 < θ < 1 ) . \begin{aligned} &f(x_0+h,y_0+k)\\ =&f(x_0,y_0)+(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})f(x_0,y_0)+\frac{1}{2!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^2 f(x_0,y_0)+...+\frac{1}{(n+1)!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1} f(x_0+\theta h,y_0+\theta k)(0<\theta<1). \end{aligned} =f(x0+h,y0+k)f(x0,y0)+(hx+ky)f(x0,y0)+2!1(hx+ky)2f(x0,y0)+...+(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)(0<θ<1).
其中记号
( h ∂ ∂ x + k ∂ ∂ y ) f ( x 0 , y 0 ) 表示 h f x ( x 0 , y 0 ) + k f y ( x 0 , y 0 ) , ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 , y 0 ) 表示 h 2 f x x ( x 0 , y 0 ) + 2 h k f x y ( x 0 , y 0 ) + k 2 f y y ( x 0 , y 0 ) , (h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})f(x_0,y_0)表示hf_x(x_0,y_0)+kf_y(x_0,y_0),\\ (h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{2}f(x_0,y_0)表示h^2f_{xx}(x_0,y_0)+2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0),\\ (hx+ky)f(x0,y0)表示hfx(x0,y0)+kfy(x0,y0),(hx+ky)2f(x0,y0)表示h2fxx(x0,y0)+2hkfxy(x0,y0)+k2fyy(x0,y0),
一般的,记号
( h ∂ ∂ x + k ∂ ∂ y ) m f ( x 0 , y 0 ) 表示 ∑ p = 0 m C m p h p k m − p ∂ m f ∂ x p ∂ y m − p ∣ ( x 0 , y 0 ) (h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{m}f(x_0,y_0)表示\left.\sum_{p=0}^{m}C_m^ph^pk^{m-p}\frac{\partial^mf}{\partial x^p\partial y^{m-p}}\right|_{(x_0,y_0)} (hx+ky)mf(x0,y0)表示p=0mCmphpkmpxpympmf (x0,y0)

重积分

二重积分和曲面积分的关系:二重积分实际上是对x,y平面进行积分;而曲面积分是在曲面上进行积分。可以把二重积分看做是曲面积分的特殊情况,此时曲面恰好是x,y平面。
利用直角坐标系进行计算
∫ ∫ D f ( x , y ) d σ = ∫ a b [ ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y ] d x = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \begin{aligned} \underset{D}{\int\int} f(x,y)d\sigma&=\int_a^b\left[\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)dy\right]dx\\ &=\int_a^bdx\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)dy \end{aligned} D∫∫f(x,y)dσ=ab[φ1(x)φ2(x)f(x,y)dy]dx=abdxφ1(x)φ2(x)f(x,y)dy
对于使用直角坐标系的进行计算的解释:先计算平行于yOz平面的薄片的面积,然后再计算薄片叠加成的体积。
在这里插入图片描述
使用极坐标进行计算
可以看成是函数 f ( x , y ) f(x,y) f(x,y)在各个小的扇形上进行积分。对于每个小的扇形
Δ σ i = 1 2 ( ρ + Δ ρ ) 2 Δ θ − 1 2 ρ 2 Δ θ = ρ Δ ρ Δ θ + 1 2 Δ ρ 2 Δ θ ∫ ∫ D f ( x , y ) d σ = ∫ ∫ D f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ d θ \begin{aligned} \Delta\sigma_i&=\frac{1}{2}(\rho+\Delta\rho)^2\Delta\theta-\frac{1}{2}\rho^2\Delta\theta&=\rho\Delta\rho\Delta\theta+\frac{1}{2}\Delta\rho^2\Delta\theta\\ \underset{D}{\int\int}f(x,y)d\sigma&=\underset{D}{\int\int} f(\rho\cos\theta,\rho\sin\theta)\rho d\rho d\theta \end{aligned} ΔσiD∫∫f(x,y)dσ=21(ρ+Δρ)2Δθ21ρ2Δθ=D∫∫f(ρcosθ,ρsinθ)ρdρdθ=ρΔρΔθ+21Δρ2Δθ
在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值