自然语言处理之语音识别:Dynamic Time Warping (DTW):序列比对算法详解
引言
DTW算法在语音识别中的重要性
在语音识别领域,Dynamic Time Warping (DTW) 算法是一种用于比较两个不同长度的语音信号序列的方法,尤其在非线性时间扭曲的情况下表现优异。语音信号的长度和时间对齐问题在实际应用中非常常见,例如,不同人说出相同词汇时,发音的持续时间可能不同,这导致了信号序列的长度差异。DTW算法通过动态规划技术,能够找到两个序列之间最佳的时间对齐方式,从而有效地比较和匹配这些序列。
举例说明
假设我们有两个语音信号序列,分别代表了“hello”和“hello”的不同发音版本。第一个序列可能包含5个时间点的特征向量,而第二个序列可能包含7个时间点的特征向量。直接比较这两个序列的相似度是不准确的,因为它们的长度不同。DTW算法通过计算一个“距离矩阵”,并使用