朴素贝叶斯算法的参数的最大似然估计

朴素贝叶斯算法的参数的最大似然估计


设输入向量为 。我们假定输入特征 是离散的、二值化的变量,即 。对每一个训练样例,输出对象是0或者1,即 。我们的模型由


参数化。
我们把 建模成伯努利分布,所以这是朴素贝叶斯最简单的特例之一。
我们根据


来建立 的联合分布。


(1)我们先写出


(2)计算关于各个参数的偏导数,令其为0,求得各个参数。
先求


从而,


接下来求


从而,


同理 的证明与上面类似,我们在这里只写出答案:





最后,我们想说明一下,我们上述建模的贝叶斯分类器,是一个线性分类器;即存在某个 使得


(假定 是一个截距项)。
证明如下:


于是,我们可以找到:




也就是说,我们拿一个新数据 代入模型测试,利用我们上面得到的线性分类器 ,与利在朴素贝叶斯比较 是等效的。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值