朴素贝叶斯算法的参数的最大似然估计 设输入向量为 。我们假定输入特征 是离散的、二值化的变量,即 。对每一个训练样例,输出对象是0或者1,即 。我们的模型由 参数化。 我们把 建模成伯努利分布,所以这是朴素贝叶斯最简单的特例之一。 我们根据 来建立 的联合分布。 (1)我们先写出 。 (2)计算关于各个参数的偏导数,令其为0,求得各个参数。 先求 , 从而, 接下来求 , 从而, 同理 的证明与上面类似,我们在这里只写出答案: 最后,我们想说明一下,我们上述建模的贝叶斯分类器,是一个线性分类器;即存在某个 使得 (假定 是一个截距项)。 证明如下: 于是,我们可以找到: 也就是说,我们拿一个新数据 代入模型测试,利用我们上面得到的线性分类器 ,与利在朴素贝叶斯比较 是等效的。