SVD分解理论

##矩阵SVD分解的理论基础

首先,我们先说明什么是矩阵的奇异值分解(single value decomposition),简称SVD。

给定一个矩阵 A ∈ R m × n A \in R^{m \times n} ARm×n, 设它的秩为r,则它具有以下的分解形式
A m × n = U m × m Σ m × n V n × n T A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T Am×n=Um×mΣm×nVn×nT
其中,U是正交矩阵,其列向量是 A A T AA^T AAT的单位特征向量,V 也是正交矩阵,其列向量是对应的 A T A A^TA ATA的单位特征向量, Σ \Sigma Σ具有下述的形式
Σ = ( Σ 1 O O O ) \Sigma = \left( \begin{array}{cc} \Sigma_1 & O \\ O & O\end{array} \right) Σ=(Σ1OOO)
Σ 1 = d i a g ( σ 1 , σ 2 , … , σ r ) \Sigma_1 = diag(\sigma_1,\sigma_2,\ldots,\sigma_r) Σ1=diag(σ1,σ2,,σr),r是矩阵A的秩, σ i ( i = 1 , 2 , … , r ) \sigma_i(i=1,2,\ldots,r) σi(i=1,2,,r) 是矩阵 A A T AA^T AAT (或 A T A A^TA ATA)的非零特征值的正平方根,也叫做A的\textbf{奇异值},当然A还可能包括零奇异值。
在我们知道了什么是SVD后,接下来看一下SVD是怎么来的,在开始之前我们先介绍一下矩阵的四个基本子空间的基本性质。

###四个基本子空间
设矩阵 A ∈ R m × n A \in R^{m \times n} ARm×n,秩rank(A) = r,
A的行空间 R ( A T ) R(A^T) R(AT) 为A 的行向量张成集合,
A的列空间 R(A)为A 的列向量的张成集合,
A的的零空间 N(A)为满足Ax = 0 的所有x 组成的集合,
A T A^T AT零空间 N ( A T ) N(A^T) N(AT) 为满足 A T y = 0 A^Ty = 0 ATy=0的所有y 组成的集合。
\par 四个基本子空间的维数分别为dim(R(A)) = r,dim( R ( A T ) R(A^T) R(AT)) = r,dim(N(A)) = n-r,dim( N ( A T ) N(A^T) N(AT)) = m - r,而且 R ( A ) ⊥ N ( A T ) R(A) \perp N(A^T) R(A)N(AT) R ( A T ) ⊥ N ( A ) R(A^T) \perp N(A) R(AT)N(A)

####有关特征值的结论

  • A A T AA^T AAT A T A A^TA ATA具有相同的非零特征值,而且所有特征值均大于等于0
  • $A = U \land U^T 为 对 称 矩 阵 A 的 特 征 值 分 解 ( 对 称 性 保 证 特 征 向 量 正 交 ) , 为对称矩阵A的特征值分解(对称性保证特征向量正交), A\land$是对角线元素A的特征值的对角矩阵,U的列向量为对应的A的特征向量。
  • rank(A) = r,则 A T A A^TA ATA的正特征值有r个

##SVD的由来

在矩阵A的行空间,我们选择一组标准正交基 v 1 , v 2 , … , v r v_1,v_2,\ldots,v_r v1,v2,,vr,经过A 变换,得到列空间的r个元素 u 1 , u 2 , … , u r u_1,u_2,\ldots,u_r u1,u2,,ur,我们希望变换后的 u 1 , u 2 , … , u r u_1,u_2,\ldots,u_r u1,u2,,ur也是正交的,所以我们在行空间选择的标准正交基就不能是任意的,它需要满足使得变换后的 u 1 , u 2 , … , u r u_1,u_2,\ldots,u_r u1,u2,,ur也正交。写成矩阵形式
A [ v 1 , v 2 , … , v r ] = [ u 1 , u 2 , … , u r ] A[v_1,v_2,\ldots,v_r] = [u_1,u_2,\ldots,u_r] A[v1,v2,,vr]=[u1,u2,,ur]
我们把 u 1 , u 2 , … , u r u_1,u_2,\ldots,u_r u1,u2,,ur单位化,设其长度分别为 σ 1 , σ 2 , … , σ r \sigma_1,\sigma_2,\ldots,\sigma_r σ1,σ2,,σr,并记单位化后的向量重新记为 u 1 , u 2 , … , u r u_1,u_2,\ldots,u_r u1,u2,,ur,则
A [ v 1 , v 2 , … , v r ] = [ σ 1 u 1 , σ 2 u 2 , … , σ r u r ] = [ u 1 , u 2 , … , u r ] [ σ 1 0 0 0 0 σ 2 0 0 0 0 … 0 0 0 0 σ r ] A[v_1,v_2,\ldots,v_r] = [\sigma_1 u_1,\sigma_2 u_2,\ldots,\sigma_r u_r] = [u_1,u_2,\ldots,u_r]\left[ \begin{array}{cccc} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \sigma_r \end{array} \right] A[v1,v2,,vr]=[σ1u1,σ2u2,,σrur]=[u1,u2,,ur]σ10000σ200000000σr
我们把零空间也考虑进来,记A的零空间的一组标准正交基 v r + 1 , v r + 2 , … , v n v_{r+1},v_{r+2},\ldots,v_n vr+1,vr+2,,vn A T A^T AT的零空间的一组标准正交基为 u r + 1 , u r + 2 , … , u n u_{r+1},u_{r+2},\ldots,u_n ur+1,ur+2,,un,则
A [ v 1 , v 2 , … , v r , v r + 1 , v r + 2 , … , v n ] = [ σ 1 u 1 , σ 2 u 2 , … , σ r u r , 0 , 0 , … , 0 ] A[v_1,v_2,\ldots,v_r,v_{r+1},v_{r+2},\ldots,v_n] = [\sigma_1 u_1,\sigma_2 u_2,\ldots,\sigma_r u_r,0,0,\ldots,0] A[v1,v2,,vrvr+1,vr+2,,vn]=[σ1u1,σ2u2,,σrur,0,0,,0]
= [ u 1 , u 2 , … , u r , u r + 1 , u r + 2 , … , u m ] [ σ 1 0 0 0 0 σ 2 0 0 0 0 … 0 0 0 0 σ r O ] = [u_1,u_2,\ldots,u_r,u_{r+1},u_{r+2},\ldots,u_m]\left[ \begin{array}{ccccc} \sigma_1 & 0 & 0 & 0 & \quad \\ 0 & \sigma_2 & 0 & 0 & \quad \\ 0 & 0 & \ldots & 0 & \quad \\ 0 & 0 & 0 & \sigma_r & \quad \\ \quad & \quad & \quad & \quad & \textbf{O} \end{array} \right] =[u1,u2,,ur,ur+1,ur+2,,um]σ10000σ200000000σrO
写成矩阵形式如下
KaTeX parse error: Undefined control sequence: \mbox at position 14: AV = U\Sigma,\̲m̲b̲o̲x̲{即,}A = U \Sigm…
什么样的U,V, Σ \Sigma Σ满足上面的要求呢?我们需要解出来。
首先,左乘 A T A^T AT,我们得到,
A T A = V Σ T U T U Σ V T = V Σ T Σ V T A^TA = V \Sigma^TU^TU\Sigma V^T = V \Sigma^T \Sigma V^T ATA=VΣTUTUΣVT=VΣTΣVT
由对称矩阵的特征值分解,我们可以知道, Σ \Sigma Σ中的 σ 1 , σ 2 , … , σ r \sigma_1,\sigma_2,\ldots,\sigma_r σ1,σ2,,σr A T A A^TA ATA的非零(即正)特征值的正平方根,也是做A正
奇异值,的正V 的列向量取对应的特征向量。
然后,右乘 A T A^T AT,我们得到,
A A T = U Σ V T V Σ T U T = U Σ Σ T U T AA^T = U\Sigma V^TV \Sigma^TU^T = U \Sigma \Sigma^T U^T AAT=UΣVTVΣTUT=UΣΣTUT
由对称矩阵的特征值分解,我们可以知道, Σ \Sigma Σ中的 σ 1 , σ 2 , … , σ r \sigma_1,\sigma_2,\ldots,\sigma_r σ1,σ2,,σr A A T AA^T AAT的非零(即正)特征值正平方根,U的列向量取对应的特征向量。
由于 A A T AA^T AAT A T A A^TA ATA具有相同的非零特征值,而且所有特征值均大于等于0,所以上述结论是成立的。

####再看SVD

从上面的推导我们可以看出,

  • V的前r列组成 R ( A T ) R(A^T) R(AT)的标准正交基
  • U的前r列组成 R ( A ) R(A) R(A)的标准正交基
  • V的后n-r列组成N(A)的标准正交基
  • U的后m-r列组成 N ( A T ) N(A^T) N(AT)的标准正交基

我们把矩阵A的SVD展开

\begin{eqnarray*}
A & = & U \Sigma V^T \ & = & [u_1,u_2,\ldots,u_r,u_{r+1},u_{r+2},\ldots,u_m] \left[ \begin{array}{ccccc}
\sigma_1 & 0 & 0 & 0 & \quad \
0 & \sigma_2 & 0 & 0 & \quad \
0 & 0 & \ldots & 0 & \quad \
0 & 0 & 0 & \sigma_r & \quad \
\quad & \quad & \quad & \quad & \textbf{O}
\end{array} \right][v_1,v_2,\ldots,v_r,v_{r+1},v_{r+2},\ldots,v_n]^T \
& = & \sigma_1 u_1v_1^T + \sigma_2 u_1v_1^T + \ldots + \sigma_r u_1v_1^T \
& = & \sum_{i=1}^r \sigma_i u_iv_i^T
\end{eqnarray*}

求矩阵A = ( 4 4 − 3 3 ) \left( \begin{array}{cc} 4 & 4 \\ -3 & 3 \end{array} \right) (4343)的奇异值分解。

A T A = ( 25 7 7 25 ) A^TA = \left( \begin{array}{cc} 25 & 7 \\ 7 & 25 \end{array} \right) ATA=(257725),特征值 λ 1 = 32 , λ 2 = 18 , \lambda_1 = 32, \lambda_2 = 18, λ1=32,λ2=18,对应的单位正交向量分别为 ( 1 2 1 2 ) \left( \begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right) (2 12 1),
( 1 2 − 1 2 ) \left( \begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{array} \right) (2 12 1)
所以 V = ( 1 2 1 2 1 2 − 1 2 ) \left( \begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{array} \right) (2 12 12 12 1),
Σ = ( 32 0 0 18 ) \Sigma = \left( \begin{array}{cc} \sqrt{32} & 0 \\ 0 & \sqrt{18} \end{array} \right) Σ=(32 0018 ).

A V = ( 8 2 0 0 − 6 2 ) AV = \left( \begin{array}{cc} \frac{8}{\sqrt{2}} & 0 \\ 0 & \frac{-6}{\sqrt{2}} \end{array} \right) AV=(2 8002 6).

因此 U = ( 8 2 1 32 0 0 − 6 2 1 18 ) = ( 1 0 0 − 1 ) U = \left( \begin{array}{cc} \frac{8}{\sqrt{2}}\frac{1}{\sqrt{32}} & 0 \\ 0 & \frac{-6}{\sqrt{2}}\frac{1}{\sqrt{18}} \end{array} \right) = \left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) U=(2 832 1002 618 1)=(1001)

所以 A = ( 1 0 0 − 1 ) ( 32 0 0 18 ) ( 1 2 1 2 1 2 − 1 2 ) A = \left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)\left( \begin{array}{cc} \sqrt{32} & 0 \\ 0 & \sqrt{18} \end{array} \right)\left( \begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{array} \right) A=(1001)(32 0018 )(2 12 12 12 1).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值