陶瓷谐振器的频率特性
01 频率特性
一、前言
刚才拆解了这款陶瓷谐振器的内部结构。 下面, 测试一下这个器件的频率特性。 基于它, 制作一个中频发送与接收 电路。
二、测试结果
首先测试三端谐振器的频率特性。 在面包板上搭建测试电路。 中间端口作为公共地线。 在一端输入信号, 另外一端作为输出。 负载电阻为 470欧姆。 使用 ADALM2000 的网络分析功能测试谐振器的频率特性。
ADALM2000可以产生激励信号。 设置扫频范围为400kHz到500kHz。 记录每个频率点对应的输出信号的幅度和相位。 这里得到了测试结果。 可以看到, 在455kHz出, 输出幅度达到最大, 大约有 6dB的插入损耗, 此时, 相位也发生了突变。
接下来, 将谐振器反过来, 调换输入输出端口, 查看一下对应的谐振特性。 从测量结果来看, 谐振频率没有改变, 只是, 输出幅度增加了。 在谐振点处信号的损耗几乎为 0dB。
▲ 图1.2.1 对比两个方向的谐振特性
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY -- by Dr. ZhuoQing 2024-09-21
#
# Note:
#============================================================
from headm import *
f1n = r'D:\Temp\11.csv'
f2n = r'D:\Temp\12.csv'
#------------------------------------------------------------
def csv2freq(fn):
fdim = []
mdim = []
pdim = []
with open(fn, 'r') as f:
for l in f.readlines():
ll = l.strip('\n').split(',')
printf(ll)
if len(ll) != 4: continue
if not ll[0].isdigit(): continue
fdim.append(float(ll[1]))
mdim.append(float(ll[2]))
pdim.append(float(ll[3]))
return fdim, mdim, pdim
#------------------------------------------------------------
f1dim,m1dim,p1dim = csv2freq(f1n)
f2dim,m2dim,p2dim = csv2freq(f2n)
plt.plot(f1dim, m1dim, lw=2, label='Measure1')
plt.plot(f2dim, m2dim, lw=2, label='Measure2')
plt.xlabel("Frequency(Hz)")
plt.ylabel("Magnitude(dB)")
plt.grid(True)
plt.legend(loc="upper right")
plt.tight_layout()
plt.show()
#------------------------------------------------------------
# END OF FILE : TEST1.PY
#============================================================
这是对比了两个方向测量的结果, 很明显, 不同方向对于信号的插入损耗是有影响的。 大约相差了 6dB左右。 从芯片的正面来看, 信号从右往左损耗最小。
下面测量两管脚器件。 还是在相同的电路上进行测试, 只是没有中间接地点。 此时, 谐振器与 470欧姆电阻串联。 从测试结果来看, 谐振器发生谐振的时候, 阻抗最大。 呈现并联谐振。 输出幅度特性达到最小。 这表明了两种器件不同的使用方法。
※ 总 结 ※
本文测试了陶瓷谐振器的频率特性。 对于三角器件, 从右往左输入信号对应的插入损耗较小。 对于两脚器件, 它可以看成一个电感电容并联谐振电路。 可以作为三极管集电极负载, 用于选择所需要的信号。
■ 相关文献链接:
● 相关图表链接: