对比在Cuda下计算矩阵运算的速度

 

01 阵运算


一、对比速度

  在这里测试一下, Pytorch中的tensor 部署在 CPU中和cuda中计算速度方面的差别。  这里生成一个 500×500 的随机矩阵。 通过 to 函数将其部署在普通内存中。 将其中的 CPU 修改 CUDA, 便可以将该矩阵放置在显存中了。  在函数中, 计算该矩阵与它的转置的乘积。  这种运算在人工神经网络中, 全连接部分的计算需要用到这种运算。  使用 timeit 来测量运行矩阵乘法的时间。  计算循环为 100000次。 下面对比矩阵在 普通内存和显存中计算所消耗的时间。

G7M1736875289_1920_1080.MP4|_-7

  测试结果显示, 在CPU中的矩阵计算耗时大约为 30.4秒。  接下来,  将矩阵部署在 GPU中,  进行相同的计算。   时间大约为 3.67秒。  比起CPU中的计算速度提高了大约 9倍。
G7M1736875608_1920_1080.MP4|_-7

  • 在CPU中的计算时间:
Computer Cost Time:30.433924299897626 seconds.
  • 在GPU中的计算时间:
Computer Cost Time:3.6623519000131637 seconds.

 

  结 ※


  文测试了矩阵的乘法在CPU中和GPU中的速度区别。  部署在GPU中, 速度提高了大约 9倍左右。

G2M1736875825_1920_1080.MP4|_-2


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值