SM,SP和GRID,BLOCK,THREAD之间的对应关系是什么?

本文详细介绍了CUDA的硬件结构和软件概念,包括SM、SP、GRID、BLOCK、THREAD等关键组件的作用和组织方式。此外还探讨了不同规模GPU上的并行计算模型,并解答了一些常见问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SM,SP是硬件结构
GRID,BLOCK,THREAD是软件概念


从硬件角度讲,一个GPU由多个SM组成(当然还有其他部分),一个SM包含有多个SP(以及还有寄存器资源,shared memory资源,L1cache,scheduler,SPU,LD/ST单元等等),1.x硬件,一个SM包含8个SP,2.0是32个,2.1是48个,3.0和3.5是192个。以及SP目前也称为CUDA CORE,而SM目前也称为MP,在KEPLER架构(SM3.0和3.5)下也称为SMX。


从软件角度讲,CUDA因为是SIMT的形式,GRID,block,thread是thread的组织形式。最小的逻辑单位是一个thread,最小的硬件执行单位是thread warp(简称warp),若干个thread(典型值是128~512个)组成一个block,block被加载到SM上运行,多个block组成整体的GRID。

这里为什么要有一个中间的层次block呢?这是因为CUDA通过这个概念,提供了细粒度的通信手段,因为block是加载在SM上运行的,所以可以利用SM提供的shared memory和__syncthreads()功能实现线程同步和通信,这带来了很多好处。而block之间,除了结束kernel之外是无法同步的,一般也不保证运行先后顺序,这是因为CUDA程序要保证在不同规模(不同SM数量)的GPU上都可以运行,必须具备规模的可扩展性,因此block之间不能有依赖。

这就是CUDA的两级并行结构。

总而言之,一个kernel对应一个GRID,该GRID又包含若干个block,block内包含若干个thread。GRID跑在GPU上的时候,可能是独占一个GPU的,也可能是多个kernel并发占用一个GPU的(需要fermi及更新的GPU架构支持)。

block是resident在SM上的,一个SM可能有一个或多个resident blocks,需要具体根据资源占用分析。

thread以warp为单位被SM的scheduler 发射到SP或者其他单元,如SFU,LD/ST unit执行相关操作,需要等待的warp会被切出(依然是resident 状态),以空出执行单元给其他warps。


那么有问题 

1. 1个block是不是只能resident在1个SM里
2. GTX660ti的cuda core是1344,kepler架构,所以应该有7个SM,每个SM有192个SP,这么理解对吗?
3. 在GTX660ti上跑一个kernel,如果block number为1,是不是gpu最多负载1/7,这么理解对吗?


ice大神这样回复


1:是的,您可以这样辅助考虑,如果一个block要使用shared memory,此时注意到shared memory是SM上的资源,不同的SM上shared memory是不通信的,也不能互相借用。所以,可以反证,一个block只能resident在一个SM上。

2:kepler架构下的SM(又称SMX)是拥有192个SP(又称CUDA CORE)没错,因而使用总的SP数量除以192即得 SM数量。您的理解是正确的。

3:这个问题说起来稍微有点复杂,因为这个和该block使用资源的情况有关,一般情况下,是无法达到1/7的,也就是说只上一个block的话很可能一个SM都跑不满,(比如这个block里面线程数量非常少,或者线程数量中等但是依然无法掩盖其他的延迟等)同时一个block最大只能有1024个线程,这对于GPU计算还是少了些。
简单地借用一个数学的概念来说明可能更为明了:“1/7是您GPU占用率的‘上界’,但可能不是‘上确界(最小上界)’,同时,这样做一般来说线程数量太少,没有意义。”

<think>嗯,用户想了解CUDA中的Warp概念及其作用。首先,我得回忆一下CUDA的基本架构。记得CUDA是NVIDIA的并行计算平台,采用SIMT架构,也就是单指令多线程。那Warp应该线程执行有关。 根据引用[4],SIMT允许线程在warp中独立执行,而SIMD需要同步执行。所以Warp可能是一组线程的组合,由硬件调度。每个Warp包含一定数量的线程,比如32个,对吧?用户可能想知道为什么需要Warp,以及它在执行时的作用。 接下来,架构部分。引用[2]提到硬件上的SMSP,软件上的gridblockthread结构。Warp应该是在SM中被调度的基本单位。每个SM包含多个SP,负责执行线程。但线程以Warp为单位调度,这样可以提高效率,减少上下文切换的开销。 功能方面,Warp的主要作用可能包括指令并行、隐藏延迟,如引用[3]所说,要最大化active warp的数量来隐藏延迟。通过让多个Warp交替执行,计算内存访问可以重叠,提高GPU利用率。 还有用户可能想知道Warp调度分支分化的问题。当Warp中的线程执行不同分支时,会导致性能下降,因为要串行处理不同路径。这也是SIMTSIMD的一个区别,SIMT允许独立执行路径,但需要处理分支分化。 需要确认Warp的大小,通常是32线程,这个是不是固定的?可能需要查证,但根据常见知识,确实是32。然后Warp调度器如何管理多个Warp,引用[3]提到的计算资源分配,比如寄存器共享内存的限制,影响active warp的数量。 总结一下,回答需要包括Warp的定义、架构中的位置、功能如指令并行延迟隐藏,以及分支分化的影响。还要引用提供的资料,比如引用[2][4]来支持解释。确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,不过目前问题可能不需要公式,但如果有数学表达式的话要注意格式。最后生成相关问题,比如Warp大小、分支分化、调度机制等。</think>### CUDA Warp 概念解析 #### 1. **Warp 的基本定义** Warp 是 CUDA 架构中**线程调度的基本单位**,由 32 个连续线程组成。这些线程在物理上以“锁步”(Lock-step)方式执行相同的指令,但可处理不同数据(SIMT 架构特性)[^4]。例如,若一个 Block 包含 128 个线程,则会被划分为 4 个 Warp。 #### 2. **Warp 的架构层级** 在 CUDA 硬件架构中: - **SM(Streaming Multiprocessor)** 是核心计算单元,包含多个 SP(Streaming Processor) Warp 调度器。 - 每个 SM 可同时管理多个活跃的 Warp(例如 NVIDIA Volta 架构支持 64 个 Warp/SM),通过快速切换 Warp 隐藏内存访问延迟[^3]。 - 线程逻辑结构(GridBlockThread)最终在硬件上映射为 Warp 执行[^2]。 #### 3. **核心功能与作用** 1. **指令并行性** Warp 调度器在每个时钟周期选择就绪的 Warp 发射指令,允许多个 Warp 交替执行以实现指令级并行。例如: ```cuda __global__ void add(int *a, int *b, int *c) { int tid = blockIdx.x * blockDim.x + threadIdx.x; c[tid] = a[tid] + b[tid]; // 所有线程执行相同加法指令 } ``` 上述代码中,每个 Warp 的 32 个线程并行执行加法操作。 2. **延迟隐藏(Latency Hiding)** 当某个 Warp 因内存访问或同步操作暂停时,调度器立即切换至其他就绪 Warp,保持计算资源利用率。 3. **分支分化处理** 若 Warp 内线程执行不同分支(如 `if-else`),会引发**分支分化**(Branch Divergence),导致串行执行所有分支路径。例如: ```cuda if (threadIdx.x % 2 == 0) { a[i] = b[i] * 2; // 偶数线程执行 } else { a[i] = b[i] / 2; // 奇数线程执行 } ``` 此时 Warp 需先执行偶数线程路径,再执行奇数线程路径,效率减半。 #### 4. **性能优化关键点** - **最大化活跃 Warp 数量**:通过调整 Block 大小资源分配(寄存器/共享内存),提高 SM 内 Warp 并发数。 - **减少分支分化**:尽量让同一 Warp 内线程走相同分支路径。 - **内存访问对齐**:确保 Warp 内线程访问连续内存地址,合并内存请求(Coalesced Memory Access)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值