图文检索(10):Multimodal Image-Text Representation Learning for Sketch-Less Facial Image Retrieval

Multimodal Image-Text Representation Learning for Sketch-Less Facial Image Retrieval


发布时间(2024 IEEE)


标题:用于无草图面部图像检索的多模态图像文本表示学习

摘要

思路:
1)预训练模型:对齐文本和图像
2)sketch和text的多尺度特征

无草图人脸图像检索 (SLFIR) 框架旨在打破绘制高质量人脸草图需要高超的技巧和大量时间的障碍,它使用尽可能少的笔画的部分草图进行检索。然而,这种早期草图通常只包含局部细节,导致检索性能不佳。在本研究中,我们提出通过将草图与先前的人类语义知识融合来学习表示,以提高早期检索性能。具体而言,(1) 基于 LAION-Face 数据集,构建面部语言图像预训练 (FLIP) 模型以学习人脸图像和文本的对齐表示;(2) 随后,以 FLIP 为主干,提取并融合草图和文本的多尺度特征以学习最终检索的有效表示。 所提出的方法在所有两个公共数据集上均实现了最先进的早期检索性能,并在实际测试中表现出良好的泛化能力。

方法

1 动机

2 FLIP

架构
图像编码器 + 文本编码器 + 图像-文本交叉注意

损失函数
ITC对比损失
ITM匹配损失:与分类类似的交叉熵损失

3 部分sketch的多模态表示

全局语义文本生成
1)描述人脸特征
2)使用LL

### STiL 方法概述 Semi-supervised Tabular-Image Learning (STiL) 是一种用于处理多模态数据的半监督学习方法[^1]。该方法旨在通过结合表格数据和图像数据来提升模型性能,特别是在标注数据有限的情况下。STiL 的核心目标是从不同模态的数据中提取任务相关信息并加以融合。 #### 多模态分类中的任务相关信息探索 在多模态分类场景下,任务相关信息通常分布在不同的数据源之间。STiL 方法通过设计特定机制,在训练过程中逐步识别哪些特征对于当前任务最为重要[^2]。具体而言: - **跨模态关联建模**:STiL 利用注意力机制捕获表格数据与图像数据之间的潜在关系。这种机制能够动态调整各模态的重要性权重,从而聚焦于最相关的部分[^3]。 - **自监督信号增强**:为了充分利用未标记样本的信息,STiL 引入了自监督学习策略。这些策略可以通过预测旋转角度、对比学习等方式生成额外的学习信号,进一步优化模型参数[^4]。 - **联合表示空间构建**:通过对齐两种模态的嵌入向量,STiL 创建了一个统一的任务相关表示空间。这使得即使某些模态缺失或质量较差时,模型仍能保持较高的鲁棒性和准确性[^5]。 以下是实现上述功能的一个简化代码框架: ```python import torch.nn as nn class STILModel(nn.Module): def __init__(self, tabular_dim, image_channels): super(STILModel, self).__init__() # 图像编码器初始化 self.image_encoder = ImageEncoder(image_channels) # 表格数据编码器初始化 self.tabular_encoder = TabularEncoder(tabular_dim) # 跨模态注意层 self.cross_modal_attention = CrossModalAttention() # 输出层定义 self.classifier = Classifier() def forward(self, table_data, image_data): img_features = self.image_encoder(image_data) tab_features = self.tabular_encoder(table_data) combined_features = self.cross_modal_attention(img_features, tab_features) output = self.classifier(combined_features) return output ``` 此代码展示了如何分别对图像和表格数据进行编码,并利用 `CrossModalAttention` 层完成两者间的交互操作[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值