线性代数学习笔记12

AX = b 、矩阵的四个子空间、矩阵空间

复习题

  • q:u、w、u是 R7维的向量,问 他们线性组合的空间维度可以是?
    求解
    0、1、2、3(注意当他们全为0向量是,可以是0维,因为没有基向量)

  • q : R 是 5 × 3 的 最 简 行 阶 梯 矩 阵 , 秩 为 3 , 求 c = [ R 2 R ] q: R是 5\times3的最简行阶梯矩阵,秩为3,求c={ \left[ \begin{array}{ccc} R \\ 2R \end{array} \right ]} q:R5×33c=[R2R] 的秩序,求 d = [ R R R 0 ] 的 秩 d={ \left[ \begin{array}{ccc} R & R\\ R & 0 \end{array} \right ]}的秩 d=[RRR0]

    求解
    c 可以通过化简得到 [ R 0 ] { \left[ \begin{array}{ccc} R \\ 0 \end{array} \right ]} [R0] 所以 r a n k ( c ) = 3 rank(c)=3 rank(c)=3d 可以化简得到 [ R R 0 − R ] = > [ R 0 0 R ] { \left[ \begin{array}{ccc} R & R \\ 0 & -R \end{array} \right ]}=>{ \left[ \begin{array}{ccc} R & 0\\ 0 & R \end{array} \right ]} [R0RR]=>[R00R]通过行阶梯矩阵的定义,我们可以知道 r a n k ( d ) = 2 r a n k ( B ) = 6 rank(d) = 2rank(B)=6 rank(d)=2rank(B)=6

  • q:已知 A X = [ 2 4 2 ] AX = { \left[ \begin{array}{ccc} 2 \\ 4\\ 2 \end{array} \right ]} AX=242的解为 x = [ 2 0 0 ] + c 1 [ 1 1 0 ] + c 2 [ 0 0 1 ] x = { \left[ \begin{array}{ccc} 2 \\ 0 \\ 0 \end{array} \right ]} + c_1 { \left[ \begin{array}{ccc} 1 \\ 1\\ 0 \end{array} \right ]} +c_2{ \left[ \begin{array}{ccc} 0 \\ 0\\ 1 \end{array} \right ]} x=200+c1110+c2001求A

    求解
    分析乘积的维度和x 的维度,可知 A 的大小 为 3*3,然后从特解着手,可知,结果只是第一列的两倍,所以可知A 的第一列为 [ 1 2 1 ] { \left[ \begin{array}{ccc} 1 \\ 2\\ 1 \end{array} \right ]} 121然后我们可以有通解着手,通解第一个,可知,第一列和第二列是相反数,从第二个通解可知,第三列全为0,所以有 A = [ 1 − 1 0 2 − 2 0 1 − 1 0 ] A = { \left[ \begin{array}{ccc} 1 & -1 & 0 \\ 2 & -2 & 0\\ 1& -1 & 0 \end{array} \right ]} A=121121000

  • 方阵A 的做零空间和零空间 的维度相等
    正确

  • B 2 = 0 = > ? B = 0 B^2=0 =>? B = 0 B2=0=>?B=0
    错误
    例如 B = [ 0 1 0 0 ] 就 是 一 个 反 例 B = { \left[ \begin{array}{ccc} 0 & 1\\ 0 & 0 \end{array} \right ]}就是一个反例 B=[0010]

  • n*n的矩阵列向量 线性无关,AX = b对于任意的 b是不是均有解
    正确

  • B = [ 1 1 0 0 1 0 1 0 1 ] × [ 1 0 − 1 2 0 1 1 − 1 0 0 0 0 ] B = { \left[ \begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0\\ 1 & 0 & 1 \end{array} \right ]} \times { \left[ \begin{array}{ccc} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right ]} B=101110001×100010110210求解B的零空间,求 B X = [ 1 0 1 ] 的 解 BX = { \left[ \begin{array}{ccc} 1 \\ 0 \\ 1 \end{array} \right ]}的解 BX=101
    求解
    我们首先观察 B 为两个矩阵相乘,有第一个矩阵是可逆,即三组列向量都是线性无关的,所以秩 为,满秩,记第一个矩阵为M,第二个矩阵为N,有 N ( B ) = N ( N ) , 因 为 有 N(B) = N(N),因为有 N(B)=N(N)
    N X = 0 = > M N X = 0 = > B = 0 NX = 0 => MNX = 0=>B=0 NX=0=>MNX=0=>B=0
    B = 0 = > M N X = 0 = > M − M N X = 0 = > N X = 0 B=0=>MNX =0 =>M^-MNX = 0 =>NX =0 B=0=>MNX=0=>MMNX=0=>NX=0所以我们可以直接求N的零空间,由于N已经是最简行阶梯矩阵,所以有零空间的基为 [ 1 − 1 1 0 ] 、 [ − 2 1 0 1 ] { \left[ \begin{array}{ccc} 1 \\ -1\\ 1 \\ 0 \end{array} \right ]}、{ \left[ \begin{array}{ccc} -2 \\ 1\\ 0\\ 1 \end{array} \right ]} 11102101
    所以B的零空间为~
    对于 B X = [ 1 0 1 ] BX = { \left[ \begin{array}{ccc} 1 \\ 0 \\ 1 \end{array} \right ]} BX=101的解,可以看出结果就是M 的第一列,而 B 的结果的第一列也是第一列的结果,所以我们的特解可以直接看出来,即只知取四列的第一列,为 [ 1 0 0 0 ] { \left[ \begin{array}{ccc} 1 \\ 0 \\ 0 \\ 0 \end{array} \right ]} 1000而通解为 特解+ 零空间~

  • 对于 方阵而言,行空间 = 列空间
    错误但是如果是转置的时候,是一定

  • 如果 A 的四个子空间 和 B 的四个子空间相等,则A 是B 的倍数?
    错误
    可以假设是 A、B是任意的 R*R 方阵的满秩方阵,都可以满足,但是不一定成倍数关系

  • v = [ 1 2 3 ] 可 以 同 时 存 在 于 零 空 间 和 列 空 间 中 ? v = { \left[ \begin{array}{ccc} 1 \\ 2 \\ 3 \end{array} \right ]}可以同时存在于零空间和列空间中? v=123
    不可以
    如: B X = [ 1 2 3 … … … … ] × [ 1 2 3 ] = 0 BX = { \left[ \begin{array}{ccc} 1 & 2 & 3\\ …… \\ …… \end{array} \right ]}\times { \left[ \begin{array}{ccc} 1 \\ 2 \\ 3 \end{array} \right ]} = 0 BX=123×123=0是不可能的,因为计算可知,第一列 14,不可能为0
    其实,除了零向量,零空间和 行空间是不可能有交集的,原因是在于 如果碰到了,绝对是不能为全为0的,他们是正交的~
    人生苦短,证明就免了吧

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值