SSDA序贯相似性检测算法
SSDA是一种基于模板匹配的图形匹配算法,目前的匹配方法主要有,基于灰度相关的匹配,基于特征的匹配灯。
优点:方法简单,抗干扰性能好,易于硬件实现。
缺点:计算量大。
所以该文章通过一系列方法来改进算法。
基本的SSDA算法
目标图像记为S,大小为K*L,待搜索图像记为W,大小为M*N。匹配时选择目标图像的左上角为参考点,当前待匹配点位于W上的(u,v)处时,在W中所选取的待匹配区域是以点(u,v),(u,v+L-1),(u+K-1,v),(u+K-1,v+L-1)组成的区域。相当于参考点位置(i,j)的点的匹配误差定义为: