我对SSDA方法的理解

本文介绍了SSDA(序贯相似性检测算法),一种基于模板匹配的图形匹配方法。基本SSDA算法通过计算误差和序列来确定匹配点,而改进的SSDA算法则通过减少噪声影响和梯度处理优化计算效率。算法流程包括计算图像梯度、选取特征点、应用噪声阈值和采用金字塔法进行多分辨率匹配。最终,通过比较不同分辨率下的匹配结果,找出最佳匹配点。
摘要由CSDN通过智能技术生成

SSDA序贯相似性检测算法


 SSDA是一种基于模板匹配的图形匹配算法,目前的匹配方法主要有,基于灰度相关的匹配,基于特征的匹配灯。
优点:方法简单,抗干扰性能好,易于硬件实现。
缺点:计算量大。
所以该文章通过一系列方法来改进算法。


基本的SSDA算法


目标图像记为S,大小为K*L,待搜索图像记为W,大小为M*N。匹配时选择目标图像的左上角为参考点,当前待匹配点位于W上的(u,v)处时,在W中所选取的待匹配区域是以点(u,v),(u,v+L-1),(u+K-1,v),(u+K-1,v+L-1)组成的区域。相当于参考点位置(i,j)的点的匹配误差定义为:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值