吴恩达机器学习笔记8-异常检测

基本含义

一组数据,判断其中某一个是否异常

Dataset:{x(1),x(2),...,x(m)} D a t a s e t : { x ( 1 ) , x ( 2 ) , . . . , x ( m ) }

Is xtest x t e s t anomalous?

我们对其分布进行建模,模型为 p(x) p ( x )

如果 p(xtest<ϵ) p ( x t e s t < ϵ ) ,那么我们认为这个数据异常
如果 p(xtestϵ) p ( x t e s t ≥ ϵ ) ,那么我们认为这个数据正常

异常检测的应用

最常见的应用是欺诈检测,用特征变量表示用户的各个行为,如果ta某一时刻的行为满足 p(xtest<ϵ) p ( x t e s t < ϵ ) ,那么我们认为用户行为异常,可能被盗号

另一个例子是工业生产领域,例如飞机的引擎是否正常

第三个例子,数据中心,对每台计算机的特征进行量化,建模,如果有一台计算机的 p(xtest p ( x t e s t 非常小,就说明可能发生异常,可以要求管理员检查

高斯分布

x~ N(μ,σ2) N ( μ , σ 2 )

p(x;μ,σ2)=12πσe(xμ)22σ2 p ( x ; μ , σ 2 ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2

σ σ -标准差, σ2 σ 2 -方差, μ μ -均值
μ μ 越大,数据越分散,图像越宽,高度越矮
图像与x轴围成的面积始终是1
+p(x)dx=1 ∫ − ∞ + ∞ p ( x ) d x = 1

参数估计问题
给出一组数据,求出高斯分布的参数 μ,σ μ , σ

μ=1mi=1mx(i) μ = 1 m ∑ i = 1 m x ( i )

σ2=1mi=1m(x(i)μ)2 σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2

异常检测算法

Dataset:{x(1),x(2),...,x(m)} D a t a s e t : { x ( 1 ) , x ( 2 ) , . . . , x ( m ) }

其中 xRn x ∈ R n
我们假设 xi x i ~ N(μi,σ2i) N ( μ i , σ i 2 ) ,每个特征都服从参数不同的正态分布,同时也假设了每个特征变量互相独立
于是
p(x)=p(x1)p(x2)...p(xn) p ( x ) = p ( x 1 ) p ( x 2 ) . . . p ( x n )

算法步骤
1. 选择一些可能出现与异常有关的特征
2. 计算参数 μ1,...,μn,σ21,...σ2n μ 1 , . . . , μ n , σ 1 2 , . . . σ n 2
3. 计算新实例x的概率
p(x)=i=1np(xi) p ( x ) = ∏ i = 1 n p ( x i )

异常检测系统的评价

如果有一些带标签的数据,指出哪些样本是正常的,哪些样本是异常的。那么我们在训练集中放入正常的无标签的数据,在交叉验证集合测试集中放入带标签的异常数据,用训练集的数据拟合p(x)。接下来把正常的一些数据也放入交叉验证集和测试集中,然后使用p(x)进行判断。

训练集:验证集:测试集=6:2:2

然后在验证集和测试集中计算p(x),计算准确率,召回率,F1

异常检测 vs 监督学习

异常检测适用的场景:正例非常少,大部分全是反例(错误的数据很少—)。有可能有不同类型的异常,而且未来出现的异常可能从没见过。
监督学习适用的场景:正例和反例都很多。未来出现的数据基本上和以前出现的很相似

如何选择异常检测算法的特征变量

如果数据分布近似高斯分布的话就选这个变量,否则就要进行处理,比如取对数。选择数据的时候不要选特别大或者特别小的。

多元高斯分布

存在这样一种情况:每个特征变量都在高斯分布正常范围内,但是合起来看就不是了,为了在此时也能正确判断异常,需要用到多元高斯分布
在多元高斯分布中,

μRn,σRnn μ ∈ R n , σ ∈ R n ∗ n

此时 σ σ 叫做协方差矩阵
多元高斯分布的概率表达式
p(x;μ,σ)=1((2π)n/2|σ|12e12(xμ)Tσ1(xμ) p ( x ; μ , σ ) = 1 ( ( 2 π ) n / 2 | σ | 1 2 e − 1 2 ( x − μ ) T σ − 1 ( x − μ )

如果变量互相独立,那么协方差矩阵非对角元都是0

使用多元高斯分布估计参数

给出数据集 Dataset:{x(1),x(2),...,x(m)} D a t a s e t : { x ( 1 ) , x ( 2 ) , . . . , x ( m ) }
其中 xRn x ∈ R n
μ=1mmi=1x(i) μ = 1 m ∑ i = 1 m x ( i )
σ=1mmi=1(xiμ)(xiμ)T σ = 1 m ∑ i = 1 m ( x i − μ ) ( x i − μ ) T

使用多元高斯分布异常检测

  1. 使用上述公式计算参数 μ μ σ σ
  2. 对于一个新的样本实例,计算 p(xnew) p ( x n e w )
  3. 如果 p(xnew)<ϵ p ( x n e w ) < ϵ ,则样本异常

什么时候用多元高斯模型

如果愿意为关联的变量创建新的特征变量,那么用原始模型更好,另外,原始模型的计算量更小。但是,多元高斯模型可以自动分析关联性。如果变量不是那么多,可以用多元高斯模型
多元高斯模型要确保样本数大于特征数 (m>n) ( m > n )
如果发现协方差矩阵不可逆,有可能是m

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值