Instance-sensitive Fully Convolutional Networks - eccv 2016
=====
论文地址:http://arxiv.org/abs/1603.08678
=====
一句话概括:
根据local coherence的特性,以sliding window的方式,利用FCN产生positive-sensitive的instance-level的segment proposal。
=====
framework
从上图可以看出,该network是一个full convolutional network(based on VGG16),除了feature extractor(VGG16的前13个conv layers)外,还有两个branches:
1 segment branch
该branch由1*1 conv,3*3 conv和一个assembling layer构成,后接segment的loss layer(采用logistic regression layer)
2 scoring branch
该branch由3*3 conv,1*1 conv构成,后接一个scoring的loss layer(采用logistic regression layer)
显然segment branch产生instance-level的segmentation mask,scoring branch对segment branch产生的instance mask进行打分。
(这里为objectness score,有点不明白为什么不是class-specific的)。
剩下的network architecture(VGG16-base)见下图:
论文采用了hole algorithm来获取dense的feature map同时保持和原来VGG16的感受野大小。
=====
key module - assembling module
论文中的network(如上所述&