Instance-sensitive Fully Convolutional Networks - eccv 2016

本文介绍了基于VGG16的全卷积网络,用于实例敏感的实例级分割提案。网络包含段分支和评分分支,其中段分支通过组装模块生成实例级分割掩模,评分分支对掩模进行打分。训练和测试过程通过滑动窗口和特定尺寸的边界框进行。尽管简单,但效果显著。
摘要由CSDN通过智能技术生成

Instance-sensitive Fully Convolutional Networks - eccv 2016

=====

论文地址:http://arxiv.org/abs/1603.08678

=====

一句话概括:

  根据local coherence的特性,以sliding window的方式,利用FCN产生positive-sensitive的instance-level的segment proposal。

=====

framework


从上图可以看出,该network是一个full convolutional network(based on VGG16),除了feature extractor(VGG16的前13个conv layers)外,还有两个branches:

    1 segment branch

该branch由1*1 conv,3*3 conv和一个assembling layer构成,后接segment的loss layer(采用logistic regression layer)

    2 scoring branch

该branch由3*3 conv,1*1 conv构成,后接一个scoring的loss layer(采用logistic regression layer)

显然segment branch产生instance-level的segmentation mask,scoring branch对segment branch产生的instance mask进行打分。

(这里为objectness score,有点不明白为什么不是class-specific的)。


剩下的network architecture(VGG16-base)见下图:


论文采用了hole algorithm来获取dense的feature map同时保持和原来VGG16的感受野大小。

=====

key module - assembling module

论文中的network(如上所述&

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值