PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - arxiv 2016.08

PVANET是一种深但轻量级的神经网络,专为实时对象检测设计。通过结合批归一化、Inception模块、C.ReLU、残差连接和多尺度表示等技术,实现高性能且快速的检测网络。相比VGG16,PVANET在PASCAL VOC数据集上表现出更高的mAP,并且在训练和测试策略上进行了优化,包括使用更少的提案和SVD降维来提高效率。此外,该模型首次将Inception结构应用于目标检测,证明了其在检测任务上的适用性。
摘要由CSDN通过智能技术生成

PVANET: Deep but Lightweight Neural Networks forReal-time Object Detection, arxiv 16.08

论文地址:https://arxiv.org/pdf/1608.08021v1.pdf

code(github): https://github.com/sanghoon/pva-faster-rcnn

(想不到作者居然这么快开源了,撒花)


=====

根据作者开源的model,pt文件,和代码等,

笔者跑了`example_train_384`这个实验(具体看上面的开源代码下的` models/pvanet/example_train_384`),其结果如下:

trainset: pascal voc 07 trainval-set

testset:  pascal voc 07 testset

mAP:71.81%

stepsize:5w

iterations:10w

lr policy:step

另外把stepsize改为8w,itrations改为11w,其mAP为72.6%,这个比vgg16的69.6%要好。

还跑了trainset为pascal voc 0712的trainval,其中(5w/10w,分别为stepsize和iterations),mAP为73.6%,这个比vgg16的75.8%要低。

=====

更新

跑trainset为pascal voc 0712的trainval,其中(32w iterations,iter_size为3,采用plateau lr policy:2w,3w,4w,5w),mAP为77.15%,这个比vgg16的75.8%要高。

跑trainset为pascal voc 0712的trainval,其中(32w iterations,iter_size为3,采用plateau lr policy:2w,3w,4w,5w,global context branch),mAP为78.38%,这个比vgg16

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值