PVANET: Deep but Lightweight Neural Networks forReal-time Object Detection, arxiv 16.08
论文地址:https://arxiv.org/pdf/1608.08021v1.pdf
code(github): https://github.com/sanghoon/pva-faster-rcnn
(想不到作者居然这么快开源了,撒花)
=====
根据作者开源的model,pt文件,和代码等,
笔者跑了`example_train_384`这个实验(具体看上面的开源代码下的` models/pvanet/example_train_384`),其结果如下:
trainset: pascal voc 07 trainval-set
testset: pascal voc 07 testset
mAP:71.81%
stepsize:5w
iterations:10w
lr policy:step
另外把stepsize改为8w,itrations改为11w,其mAP为72.6%,这个比vgg16的69.6%要好。
还跑了trainset为pascal voc 0712的trainval,其中(5w/10w,分别为stepsize和iterations),mAP为73.6%,这个比vgg16的75.8%要低。
=====
更新
跑trainset为pascal voc 0712的trainval,其中(32w iterations,iter_size为3,采用plateau lr policy:2w,3w,4w,5w),mAP为77.15%,这个比vgg16的75.8%要高。
跑trainset为pascal voc 0712的trainval,其中(32w iterations,iter_size为3,采用plateau lr policy:2w,3w,4w,5w,global context branch),mAP为78.38%,这个比vgg16