yolo测试自己数据集初体验(自己训练数据集+调用yolov3 python接口)

本文记录了作者在使用YOLOv3模型训练自己数据集并调用Python接口的过程中遇到的问题及解决方案。首先,作者按照教程将VOC数据集转换为YOLO格式,然后在训练过程中遇到错误。通过查找资料,发现是由于使用了YOLOv2版本的代码而训练的是YOLOv3模型,导致调用函数不匹配。通过修改源码解决了这个问题,包括在image.c和image.h中添加相应代码,并更新Makefile。最终成功运行并强调在测试时务必开启GPU以提升效率。
摘要由CSDN通过智能技术生成

 

 

https://chtseng.wordpress.com/2018/09/01/%E5%BB%BA%E7%AB%8B%E8%87%AA%E5%B7%B1%E7%9A%84yolo%E8%BE%A8%E8%AD%98%E6%A8%A1%E5%9E%8B-%E4%BB%A5%E6%9F%91%E6%A9%98%E8%BE%A8%E8%AD%98%E7%82%BA%E4%BE%8B/ 

弯弯的,应该进不去

按照这个教程  https://blog.csdn.net/qq_21578849/article/details/84980298

#这是将VOC数据集里面的数据提取一类,我的是person,需要改动的,就是文件夹的名称和位置,以及保存路径

import os
import os.path
import shutil

fileDir_ann = "E:\\VOCdevkit\\VOC2007\\Annotations"
fileDir_img = "E:\\VOCdevkit\\VOC2007\\JPEGImages\\"
saveDir_img = "E:\\VOCdevkit\\VOC2007\\JPEGImages_ssd\\"

if not os.path.exists(saveDir_img):
    os.mkdir(saveDir_img)


names = locals()

for files in os.walk(fileDir_ann):
    for file in files[2]:

        print (file + "-->start!" )

        saveDir_ann = "E:\\VOCdevkit\\VOC2007\\Annotations_ssd\\"
        if not os.path.exists(saveDir_ann):
            os.mkdir(saveDir_ann)

        fp = open(fileDir_ann + '\\' + file)
        saveDir_ann = saveDir_ann + file
        fp_w = open(saveDir_ann, 'w')
        classes = ['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable','dog','horse','motorbike','pottedplant','sheep','sofa','train','tvmonitor','person']

        lines = fp.readlines()
        ind_start = []
        ind_end = []
        lines_id_start = lines[:]
        lines_id_end = lines[:]

        classes1 = 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值