目标检测:R-CNN

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


5.2 R-CNN

学习目标

  • 目标
    • 了解Overfeat模型的移动窗口方法
    • 说明R-CNN的完整结构过程
    • 了解选择性搜索
    • 知道NMS的过程以及作用
    • 了解候选区域修正过程
    • 说明R-CNN的训练过程
    • 说明R-CNN的缺点
  • 应用

对于一张图片当中多个目标,多个类别的时候。前面的输出结果是不定的,有可能是以下有四个类别输出这种情况。或者N个结果,这样的话,网络模型输出结构不定

所以需要一些他的方法解决目标检测(多个目标)的问题,试图将一个检测问题简化成分类问题

5.2.1 目标检测-Overfeat模型

5.2.1.1 滑动窗口

  • 目标检测的暴力方法是从左到右、从上到下滑动窗口,利用分类识别目标。
    • 为了在不同观察距离处检测不同的目标类型,我们使用不同大小和宽高比的窗口。如下图所示:

注:这样就变成每张子图片输出类别以及位置,变成分类问题。

但是滑动窗口需要初始设定一个固定大小的窗口,这就遇到了一个问题,有些物体适应的框不一样

  • 所以需要提前设定K个窗口,每个窗口滑动提取M个,总共K x M 个图片,通常会直接将图像变形转换成固定大小的图像,变形图像块被输入 CNN 分类器中,提取特征后,我们使用一些分类器识别类别和该边界框的另一个线性回归器。

5.2.1.2 Overfeat模型总结

这种方法类似一种暴力穷举的方式,会消耗大量的计算力量,并且由于窗口大小问题可能会造成效果不准确

。但是提供了一种解决目标检测问题的思路

5.2.2 目标检测-R-CNN模型

在CVPR 2014年中Ross Girshick提出R-CNN。论文名称:用于精确的对象检测和语义分割的丰富功能层次结构(Rich feature hierarchies for accurate object detection and semantic segmentation)

5.2.2.1 论文背景

各种视觉识别任务的过去的十年取得了很大的进步,这取决于SIFT和HOG的使用。但是如果我们观察典型的视觉识别任务的性能,如PASCAL VOC对象检测3,会发现2010-2012年进展缓慢,仅通过组合不同模型和使用已有方法的变体来获得很小的改进。

在典型的PASCAL VOC数据集上测量的对象检测性能在过去几年中已经稳定下来。最好的方法是复杂的系统,通常将多个低级图像特征与高级语境相结合。R-CNN与OverFeat进行比较,OverFeat是最近提出的基于类似CNN架构的滑动窗口检测器。我们发现R-CNN在20类的ILSVRC2013检测数据集上大幅超越OverFeat。

  • 效果:相对于2012年VOC的先前最佳结果,平均精度(mAP)提高了30%以上,达到53.3%的mAP,在200类的ILSVRC2013检测数据集上,R-CNN的mAP为31.4%,超过OverFeat的24.3%很多
  • 方法:
    • 1、可以将大容量卷积神经网络(CNN)应用于自下而上的区域提案,以便定位和分割对象
    • 2、当标记的训练数据稀缺时,对辅助任务进行训练,然后进行域特定的微调,可以显着提升性能
    • 注:将区域提案与CNN相结合,所以我们称之为我们的方法R-CNN:具有CNN特征的区域

5.2.2.1 完整R-CNN结构

不使用暴力方法,而是用候选区域方法(region proposal method),创建目标检测的区域改变了图像领域实现物体检测的模型思路,R-CNN是以深度神经网络为基础的物体检测的模型 ,R-CNN在当时以优异的性能令世人瞩目,以R-CNN为基点,后续的SPPNet、Fast R-CNN、Faster R-CNN模型都是照着这个物体检测思路。如下图过程为:输入一张图像,提取约2000个自下而上区域提案,使用大卷积神经网络(CNN)计算每个提案的特征,然后使用类别特定的线性SVM。

  • 步骤(论文中以AlexNet网络为基准)
    • 1.候选区域:使用选择性搜索选择2000个候选区域
    • 2.将候选区域调整为适应AlexNet网络的输入图像的大小227×227,通过CNN对候选区域提取特征向量,2000个建议框的CNN特征组合成网络AlexNet最终输出:2000×4096维矩阵
    • 3.将2000×4096维特征经过SVM分类器(假设20种分类,SVM是二分类器,则有20个SVM),获得2000×20种类别矩阵(图像的所有点积运算都被整合为单个矩阵与矩阵的相乘。特征矩阵通常为2000×4096,SVM权重矩阵为4096×N,其中N为类别数)
  • 测试:
    • 分别对2000×20维矩阵中进行非极大值抑制(NMS:non-maximum suppression)剔除重叠建议框,得到与目标物体最高的一些建议框
    • 修正bbox,对bbox做回归微调

5.2.2.2 候选区域(Region of Interest)得出(了解)

选择性搜索(SelectiveSearch,SS)中,selective search方法是一个语义分割的方法,它通过在像素级的标注,把颜色、边界、纹理等信息作为合并条件,多尺度的综合采样方法,划分出一系列的区域,这些区域要远远少于传统的滑动窗口的穷举法产生的候选区域。

SelectiveSearch在一张图片上提取出来约2000个侯选区域,需要注意的是这些候选区域的长宽不固定。 而使用CNN提取候选区域的特征向量,需要接受固定长度的输入,所以需要对候选区域做一些尺寸上的修改。

5.2.2.3 CNN特征提取

通过训练好的Alex-Net,先将每个region固定到227*227的尺寸,然后对于每个region都提取一个4096维的特征。在侯选区域的基础上提取出更高级、更抽象的特征,这些高级特征是作为下一步的分类器、回归的输入数据。

提取的这些特征将会保存在磁盘当中(这些提取的特征才是真正的要训练的数据

注:为什么CNNs需要一个固定的输入尺寸呢?CNN主要由两部分组成,卷积部分和其后的全连接部分。卷积部分通过滑窗进行计算,并输出代表激活的空间排布的特征图(feature map)。事实上,卷积并不需要固定的图像尺寸,可以产生任意尺寸的特征图。而另一方面,根据定义,全连接层则需要固定的尺寸输入。因此固定尺寸的问题来源于全连接层,也是网络的最后阶段。含有全连接层的网络输入数据的大小应该是固定的,这是因为全连接层和前面一层的连接的参数数量需要事先确定,不像卷积核的参数个数就是卷积核大小,前层的图像大小不管怎么变化,卷积核的参数数量也不会改变,但全连接的参数是随前层大小的变化而变的,如果输入图片大小不一样,那么全连接层之前的feature map也不一样,那全连接层的参数数量就不能确定, 所以必须实现固定输入图像的大小。

5.2.3 模型训练

5.2.3.1 CNN训练训练

首先拿到Alex-Net在imagenet上训练的CNN作为pre-train,然后将该网络的最后一个fc层的1000改为(论文测试的数据集是20类object+background)N+1(N为类别的数目,1是加一个背景)来fine-tuning用于提取特征的CNN。

  • 论文中:将候选区域与人工标注的真实检测框大于0.5的IOU作为正样本,小于0.5的作为负样本,以0.001(初始学习率的1/10)的学习率开始SGD,对于每个batch-size = 128,32个为正样本,96个位负样本,以构建大小为128的小批量。
    • 采用正样本较少是因为它们与背景相比非常少见

5.2.3.2 分类器SVM训练

  • 目的:训练N(N为类别数)个svm分类器,分别对每一类做一个二分类,
  • 1、一张图片的2000个侯选区域,那么提取出来的就是2000 x 4096这样的特征向量(R-CNN当中默认CNN层输出4096特征向量)。
  • 2、R-CNN选用SVM进行二分类。假设检测20个类别,那么会提供20个不同类别的SVM分类器,每个分类器都会对2000个候选区域的特征向量分别判断一次,这样得出[2000, 20]的得分矩阵,如下图所示

  • 分类训练正负样本:

    • 进行正负样本的区分,IoU的值进行比较,但是这个值大小会影响最终的效果。在这里,作者是将大于0.5的IoU作为正样本,小于0.3的IoU作为负样本,至于为什么这里不是0.5,当设置为0.5的时候,mAP下降5%,设置为0的时候下降4%,最后取中间0.3。
    • 为什么这样么选择IoU负样本小于0.3的: 因为softmax的负样本(也可以理解为背景样本)是随机选择的即在整个网络中是共享的,而svm的负样本是相互独立的,每个类别都分别有自己的负样本,svm的负样本更加的“hard”,所以svm的分类的准确率更高。
  • 每个SVM分类器做的事情

    • 判断2000个候选区域是某类别,还是背景

5.2.3.3 Boundingbox Regression

那么通过非最大一直筛选出来的候选框不一定就非常准确怎么办?R-CNN提供了这样的方法,建立一个bbox regressor

  • 来源于受到DPM中使用的边框回归训练启发,训练一个线性回归模型在给定一个selective search region proposal的特征时去预测一个新的检测窗口。修复了大量的定位错误的检测情况,提升了3-4个百分点。

这一部分,通过训练一个回归器来对region的范围进行一个调整,毕竟region最开始只是用selective search的方法粗略得到的,通过调整之后得到更精确的位置。修正候选区域过程如下:

  • 回归用于修正筛选后的候选区域,使之回归于ground-truth,默认认为这两个框之间是线性关系,因为在最后筛选出来的候选区域和ground-truth很接近了

修正过程(线性回归)

5.2.3.4 正负样本分配问题?

第一个是:为什么在微调CNN和训练目标检测SVM时定义的正负样本不同?

首先简要回顾下正负样本的定义,对于微调,我们将每个目标提案映射到它具有最大IoU重叠(如果有的话)的检测框真值上,

  • 如果其IoU至少为0.5,并将其标记为对应类别的正样本。剩下的提案都标记为“背景”(即所有类的负样本)。

  • 对于训练SVM,相比之下,我们只采用检测框真值作为各自类别的正样本。与某一类别所有的正样本的IoU都小于0.3的目标提案将被标记为该类别的负样本。其它(IoU超过0.3,但不是检测框真值)的提案被忽略。

  • 1、结果上不好:顺序上,我们开始通过由ImageNet预先训练的CNN计算出的特征训练SVM,因此微调在这个时间点不是一个需要考虑因素。论文中实验开始使用微调时,如果使用与SVM训练的正负样本的定义相同的定义。会发现结果比使用当前定义的正负样本获得的结果差得多。

5.2.4 测试过程

首先咋两个数据集的测试结果如下:

1、PASCAL VOC2010-12上的结果

2、ILSVRC13上的结果

5.2.4.1 非最大抑制(NMS)

  • 目的

    • 筛选候选区域,目标删除那些冗余的候选框
  • 输入:

    • 通过N个SVM来判断每一个RP属于各个类的scores。其中,SVM的权重矩阵大小为4096 xN,最后得到2000 x N的一个分数矩阵。找到每个bbox对应的类别。
  • 迭代过程:

    • 对于某个类别中Bounding Box的位置以及置信度集合列表B,选择具有最大score的检测框M,将其从B集合中移除并加入到最终的模型输出检测结果G中。然后将B中剩余检测框中与M的IoU大于阈值threshold的框从B中移除。然后重复上述过程,直到B为空。
      • 两个集合:B集合(模型最开的bbox结果)和G集合(输出检测结果)

假设现在滑动窗口有:A、B、C、D、E 5个候选框都是预测车类别分数最高,接下来最计算:

  • 第一轮:因为B是得分最高的,与B的IoU>0.5删除。A,CDE中现在与B计算IoU,DE结果>0.5,剔除DE,B作为一个预测结果,有个检测框留下B,放入集合
  • 第二轮:A的得分最高,与A计算IoU,C的结果>0.5,剔除C,A作为一个结果

最终结果为在这个5个中检测出了两个目标为A和B

注:SS算法得到的物体位置已经固定了,但是我们筛选出的位置不一定真的就特别准确,需要对A和B进行最后的修正

实现代码解析

import numpy as np

def nms(dets, thresh):
    # dets: 检测的 boxes 及对应的 scores
    # thresh: 设定的阈值

    # boxes 位置
    x1 = dets[:, 0]  
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]

    # boxes scores
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1) # 各 box 的面积
    order = scores.argsort()[::-1] # boxes 的按照 score 排序

    keep = [] # 记录保留下的 boxes
    while order.size > 0:
        i = order[0] # score 最大的 box 对应的 index
        keep.append(i) # 将本轮 score 最大的 box 的 index 保留

        # 计算剩余 boxes 与当前 box 的重叠程度 IoU
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1) # IoU
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        # 保留 IoU 小于设定阈值的 boxes
        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]

    return keep

NMS每个类别处理过程顺序 

1)每个候选框通过SVM得到的若干score得到最大分数对应的所属类别为候选框的类别

2) 再次进行选择最大的score的框,放入结合检测结果集合中,进行重复的IoU判断和删除候选框

3) 剩余候选框与M计算将IoU值大于threshold的框从原有集合中删除

4) 每个类别候选框中进行置信度排序,选择一个最大score的候选框M放入检测结果集合

5)NMS过程开始对所有候选框中属于相同类别所属的候选框进行筛选


5.2.5 检测的评价指标

5.2.5.1 IoU交并比

  • 目的:主要用于在CNN和SVM训练的时候计算正负样本使用,以及测试阶段的NMS使用
任务description输入输出评价标准
Detection and Localization (检测和定位)在输入图片中找出存在的物体类别和位置(可能存在多种物体)图片(image )类别标签(categories)和 位置(bbox(x,y,w,h))IoU (Intersection over Union)
  • IoU(交并比)
    • 两个区域的重叠程度overlap:侯选区域和标定区域的IoU值

  • 通常Correct: 类别正确 且 IoU > 0.5

1、IOU 实现(重点)

def union(au, bu, area_intersection):
    """
    计算并集
    :param au:
    :param bu:
    :param area_intersection:
    :return:
    """
    # 计算a的面积
    area_a = (au[2] - au[0]) * (au[3] - au[1])
    # 计算b的面积
    area_b = (bu[2] - bu[0]) * (bu[3] - bu[1])
    # a和b的面积-交集面积=总共面积
    area_union = area_a + area_b - area_intersection
    return area_union


def intersection(ai, bi):
    """
    计算交集
    :param ai:a框坐标
    :param bi:b框坐标
    :return:
    """
    # 1、取出交集的左上角点
    x = max(ai[0], bi[0])
    y = max(ai[1], bi[1])
    # 2、取出交集的右下角点,并减去左上角点值,计算出交集长宽
    w = min(ai[2], bi[2]) - x
    h = min(ai[3], bi[3]) - y
    # 3、如果一个为0,返回交集面积为0
    if w < 0 or h < 0:
        return 0
    return w*h


def iou(a, b):
    """
    计算交并比
    :param a: a框坐标
    :param b: b框坐标
    :return:
    """
    # 1、如果a,b 传入有问题
    if a[0] >= a[2] or a[1] >= a[3] or b[0] >= b[2] or b[1] >= b[3]:
        return 0.0

    # 2、计算IOU
    # 交集区域
    area_i = intersection(a, b)
    # 并集区域
    area_u = union(a, b, area_i)

    return float(area_i) / float(area_u + 1e-6)  # 防止分母为0,加一个稳定系数

做测试:

if __name__ == '__main__':
    # 假设一个图片10 x 10的大小,左上角(0, 0) 右下角(10, 10)
    # A框:(1, 1, 5, 5),B框:(3, 3, 6, 6)
    a = (1, 1, 5, 5)
    b = (3, 3, 6, 6)
    print("交并比为:%f" % iou(a, b))

输出结果:

交并比为:0.190476

5.2.5.2 平均精确率(mean average precision)mAP

目标检测问题中的每个图片都可能包含一些不同类别的物体。如前所述,需要评估模型的物体分类和定位性能。因此,用于图像分类问题的标准指标accuracy不能直接应用于此。

  • 首先回顾精确率与召回率
    • 精度precision的计算是用 检测正确的数据个数/总的检测个数
    • 召回率recall的计算是用 检测正确的数据个数/所有正数据个数。

  • mAP:
    • 定义:多个分类任务的AP的平均值
      • mAP = 所有类别的AP之和 / 类别的总个数
      • 注:在机器学习中的PR曲线,而AP(average precision)就是这个曲线下的面积(ROC与AUC)
    • 注意事项:测试的时候计算mAp的话, 是用非极大抑制之后得到的结果来计算

1、前提条件,测试数据中会有很多图片进行测试

  • 给定ground truth label (GT),每一个GT包含(imageID, bbox, category),分别为所属图片ID、矩形框位置、所属类别。

  • prediction,每一个prediction包含(imageID, bbox, category, score),相比GT多了score属性,即每个prediction的confidence

  • IOU threshold

2、计算每个类别的AP(计算流程)

(1)分配GT

  • 相同imageID下,相同category下,对prediction分配GT
    • 1、score大的predication优先分配GT
    • 2、与GT的overlap小于IOU threshold的prediction不分配GT
    • 3、与多个GT的overlap大于IOU threshold的prediction,分配IOU最大的GT
    • 4、每个GT最多只分配给一个prediction
      • 注:COCO数据集或有AP-50,AP-75说法,就是threshold=0.5和threshold=0.75的判断标准不一样

(2)计算每个类别的AP

  • 相同category下,确定该类别下所有的预测属于(TP、TN、FN)哪个(指定一个score threshold)
    • TP、FP、TN确定阶段:
      • 1、对于某一score threshold,有分配GT的并且score大于score threshold的prediction为TP
      • 2、无分配且score大于score threshold的prediction为FP
      • 3、其余的GT为FN
    • 计算AP
      • precision=TP/(TP+FP)
      • recall=TP/(TP+FN)
    • score threshold选取[0,1]之间的11个不同的值[0, 0.1, ..., 0.9, 1.0],得到PR-curve
    • 对PR-curve积分求面积得到AP
  • (3)不同category重复上述流程,对AP求平均得到mAP(COCO会对不同IOU threshold,重复上述流程,对mAP求平均)

5.2.5 论文R-CNN总结

5.2.5.1 特征提取对比

  • 微调不同层的效果: 分别是pool5,fc6和fc7经过finetuning之后的结果,由上图可以看出,pool5经过finetuning之后,mAP的提高不大,所以可以说明卷积层提取出来的特征是更具有泛化性的,而fc7经过finetuning之后的提升最大,说明finetuning主要作用于全连接层。

  • 与近期特征学习方法的比较

    • 所有R-CNN变体的都优于三个DPM基线(第8-10行),包括使用特征学习的两个。与仅使用HOG特征的最新版本的DPM相比,我们的mAP提高了20个百分点以上:54.2%对比33.7%,相对改进61%。HOG和草图表征的组合与单独的HOG相比mAP提高2.5个点,而HSC在HOG上mAP提高了4个点(使用内部私有的DPM基线进行比较,两者都使用非公开实现的DPM,低于开源版本20)。这些方法的mAP分别达到29.1%和34.3%。

5.2.5.2 网络架构

论文中大部分结果所采用的架构都来自于Krizhevsky et al. (AlexNet),架构的选择对于R-CNN的检测性能会有很大的影响。VOC2007测试时采用了16层的深度网络,由Simonyan和Zisserman(VGG)。

  • 将我们的基准网络称为T-Net表示TorontoNet

  • 这个网络在ILSVRC 2014分类挑战上是最佳表现。这个网络采用了完全同构的13层3×3卷积核,中间穿插了5个最大池化层,顶部有三个全连接层。称这个网络为O-Net表示OxfordNet

总结:结果显示使用O-Net的R-CNN表现优越,将mAP从58.5%提升到了66.0%。然后它有个明显的缺陷就是计算耗时。O-Net的前向传播耗时大概是T-Net的7倍。

5.2.5.3 流程总结

5.2.5.4 缺点

  • 1、训练阶段多:步骤繁琐: 微调网络+训练SVM+训练边框回归器。

  • 2、训练耗时:占用磁盘空间大:5000张图像产生几百G的特征文件。(VOC数据集的检测结果,因为SVM的存在)

  • 3、处理速度慢: 使用GPU, VGG16模型处理一张图像需要47s

  • 4、图片形状变化:候选区域要经过crop/warp进行固定大小,无法保证图片不变形

5.2.6 总结

  • Overfeat模型的移动窗口方法
  • R-CNN的完整结构过程
  • NMS的过程以及作用
  • 候选区域修正过程
  • R-CNN的训练过程
  • 说明R-CNN的缺点
  • IoU的过程以及计算代码
  • mAp的计算过程

第一步:
	1.先使用CNN对图片提取2000个候选框的特征值,对每个候选框进行正样本/负样本的标记。
	2.分类的类别是所有类别之上还要加多一个背景类别,源类别数之上再加一。
	3.标记正样本/负样本的标准:候选框与目标真实框的IoU(重合程度)大于0.5标记为正样本,小于0.5标记为负样本,并且把目标真实框的类别目标值赋值到候选框上。
	4.最终还要把这些特征值都保存到本地,供于第二步的SVM分类训练使用。

第二步:
	1.SVM分类器的个数:比如有20个类别就有20个SVM分类器,不包含背景类别。
	2.所有SVM分类器都会对存储在本地的每个候选框的特征值进行分类,有20个SVM分类器的话,那么每个候选框都有20个分类器的打分。
	3.SVM分类器分类的标准:所有类别都分别各自有一个目标真实框,所有类别的SVM分类器都会对每个候选框进行筛选,
	  只有候选框与目标真实框的IoU(重合程度)大于0.5并且被赋值了类别目标值,那么该候选框才会被分类为该类别的正样本,
	  如果与目标真实框的IoU(重合程度)小于0.3的话,那么该候选框会被分类为该类别的负样本,
	  与目标真实框的IoU(重合程度)在0.3到0.5之间的候选框会被丢弃掉,每个候选框都会被所有的SVM分类器进行逐一打分做标记

第三步:
	使用回归器对候选框的锚框点进行线性回归,使得候选框的锚框点接近真实目标框的锚框点的坐标位置


计算IoU:计算交并比

1.候选框的坐标表示为(左上角的x坐标,左上角的y坐标,右下角的x坐标,右下角的y坐标)
2.一般的都是左上角的x/y坐标小,右下角的x/y坐标大,因为x/y坐标轴的零点位于左上角处。
"""
非极大值抑制(NMS)
1.输入数据:
    通过SVM分类器对每个锚框分类好之后,每个锚框都带上了预测类别标签值和该预测类别的置信度score,最终每个锚框都放到对应的类别列表中。
2.迭代过程:
    对每个分类列表中的锚框进行处理,比如对某个类别的列表中所有锚框根据其预测类别的置信度score按从大到小进行排序,
    首先类别的列表中取出第一个score值最大的锚框放到输出列表中,然后类别的列表中剩余的所有锚框逐一和输出列表中第一个锚框进行计算IoU值(交并比),
    把IoU值>0.5的锚框都丢弃掉,只留下IoU值<0.5的锚框继续进行下一轮比较。
    下一轮比较中,仍然先把分类列表中剩余的(score值最大)第一个锚框放到输出列表中,
    然后分类列表中剩余的所有锚框再和输出列表中最后添加进去的锚框进行计算IoU值(交并比),
    同样的把IoU值>0.5的锚框都丢弃掉,只留下IoU值<0.5的锚框,以此类推继续进行下一轮比较。
"""

import numpy as np

def nms(bounding_boxes, confidence_score, threshold):
    """
    :param bounding_boxes: 检测的 boxes 及对应的 scores
    :param confidence_score: 置信度score
    :param threshold: 设定的阈值
    :return:
    """

    # boxes 位置
    x1 = bounding_boxes[:, 0] # 左上角的x坐标
    y1 = bounding_boxes[:, 1] # 左上角的y坐标
    x2 = bounding_boxes[:, 2] # 右下角的x坐标
    y2 = bounding_boxes[:, 3] # 右下角的y坐标

    #一般的都是左上角的x/y坐标小,右下角的x/y坐标大,因为x/y坐标轴的零点位于左上角处。
    # 右下角的x坐标x2 - 左上角的x坐标x1 = 长
    # 右下角的y坐标y2 - 左上角的y坐标y1 = 高
    areas = (x2 - x1 + 1) * (y2 - y1 + 1) # 各 box 的面积 = 长*高

    # argsort从小到大排序,返回的是元素的索引值,[::-1]表示倒排变成从大到小 排序,排序后返回的结果为元素索引值[0, 2, 1]
    order = confidence_score.argsort()[::-1] # boxes 的按照 置信度score 从大到小 排序

    keep_box = [] # 记录保留下的 boxes 作为输出列表
    keep_confidence_score = [] # 记录保留下的 置信度score 作为输出列表

    while order.size > 0:
        i = order[0] # score 最大的 box 对应的 index
        keep_box.append(i) # 将本轮 score 最大的 box 的 index 保留
        keep_confidence_score.append(i)   # 将本轮 score 最大的 box 的 置信度score

        # 计算剩余 boxes 与当前 box 的重叠程度 IoU
        """ 类别的列表中剩余的所有锚框逐一和输出列表中第一个锚框进行 计算交集,作为分子 """
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        """ 交集面积,作为分子 """
        inter = w * h
        """
        areas[i]:最后添加进输出列表的的锚框的面积
        areas[order[1:]]:类别列表中的剩余锚框的面积
        areas[i] + areas[order[1:]] - inter:两者相加再减去两者的交集求出两者的并集面积
        两者的交集面积作为分子,两者的并集面积作为分母,求出的分别都是剩余锚框的 IoU值(交并比)
        """
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        """
        np.where()[0] 表示行的索引 
        np.where()[1] 表示列的索引 
        把剩余锚框的<=阈值的锚框都留下继续进行下一轮比较
        此处的np.where()[0]取出的是类别列表中剩余锚框的索引值
        """
        # 保留 IoU 小于设定阈值的 boxes
        inds = np.where(ovr <= threshold)[0]
        #只保留 <=阈值的锚框,根据所取出类别列表中剩余锚框的索引值取出该部分锚框进行下一轮比较
        order = order[inds + 1]


    return keep_box, keep_confidence_score

def union(au, bu, area_intersection):
    """
    计算并集
    :param au:
    :param bu:
    :param area_intersection:
    :return:
    """
    # 计算a的面积
    area_a = (au[2] - au[0]) * (au[3] - au[1])
    # 计算b的面积
    area_b = (bu[2] - bu[0]) * (bu[3] - bu[1])
    # a和b的面积-交集面积=总共面积
    area_union = area_a + area_b - area_intersection
    return area_union


def intersection(ai, bi):
    """
    计算交集
    :param ai:a框坐标
    :param bi:b框坐标
    :return:
    """
    # 1、取出交集的左上角点
    x = max(ai[0], bi[0])
    y = max(ai[1], bi[1])
    # 2、取出交集的右下角点,并减去左上角点值,计算出交集长宽
    w = min(ai[2], bi[2]) - x
    h = min(ai[3], bi[3]) - y
    # 3、如果一个为0,返回交集面积为0
    if w < 0 or h < 0:
        return 0
    return w*h


def iou(a, b):
    """
    计算交并比
    :param a: a框坐标
    :param b: b框坐标
    :return:
    """
    # 1、如果a,b 传入有问题
    if a[0] >= a[2] or a[1] >= a[3] or b[0] >= b[2] or b[1] >= b[3]:
        return 0.0

    # 2、计算IOU
    # 交集区域
    area_i = intersection(a, b)
    # 并集区域
    area_u = union(a, b, area_i)

    return float(area_i) / float(area_u + 1e-6)  # 防止分母为0,加一个稳定系数



if __name__ == '__main__':
    # 1.候选框的坐标表示为(左上角的x坐标,左上角的y坐标,右下角的x坐标,右下角的y坐标)
    # 2.一般的都是左上角的x/y坐标小,右下角的x/y坐标大,因为x/y坐标轴的零点位于左上角处。
    bounding_boxes = np.array([(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)])
    confidence_score = np.array([0.9, 0.75, 0.8])  # 置信度score
    threshold = 0.4  # 阈(yu)值

    keep_box, keep_confidence_score = nms(bounding_boxes,confidence_score,threshold)
    print(bounding_boxes[keep_box]) #[[187  82 337 317]]
    print(confidence_score[keep_confidence_score]) # [0.9]
def union(au, bu, area_intersection):
    """计算并集面积
    :param au: a框坐标
    :param bu: b框坐标
    :param intersection: 交集面积
    :return:
    """
    # a框面积
    area_a = (au[2] - au[0]) * (au[3] - au[1])

    # b框面积
    area_b = (bu[2] - bu[0]) * (bu[3] - bu[1])

    # a+b面积-交集面积
    area_union = area_a + area_b - area_intersection
    return area_union


def intersection(ai, bi):
    """计算交集
    :param ai: a框坐标
    :param bi: b框坐标
    :return:
    """
    # 1、求出交集的左上角点
    # ai和bi的左上角的x谁更大
    # ai和bi的左上角的y谁更大
    x_left = max(ai[0], bi[0])
    y_left = max(ai[1], bi[1])

    # 2、求出交集的右下角点
    x_right = min(ai[2], bi[2])
    y_right = min(ai[3], bi[3])

    # 求出长宽
    w = x_right - x_left
    h = y_right - y_left

    if w < 0 or h < 0:
        return 0
    return w * h


def IoU(a, b):
    """计算交并比
    :param a: a框坐标
    :param b: b框坐标
    :return:
    """
    # 1、做异常处理
    if a[0] >= a[2] or a[1] >= a[3] or b[0] >= b[2] or b[1] >= b[3]:
        return 0.0

    # 2、计算交并比,计算交集,计算并集  交集/并集+epsilon
    area_i = intersection(a, b)
    area_u = union(a, b, area_i)

    return float(area_i) / float(area_u + 1e-6)


if __name__ == '__main__':
    # 假设一个图片10 x 10的大小,左上角(0, 0) 右下角(10, 10)
    # A框:(1, 1, 5, 5),B框:(3, 3, 6, 6)
    a = (1, 1, 5, 5)
    b = (1, 1, 6, 6)
    print("交并比为:%f" % IoU(a, b))
import numpy as np

def nms(bboxes, confidence_score, threshold):

    """非极大抑制过程

    :param bboxes: 同类别候选框坐标

    :param confidence: 同类别候选框分数

    :param threshold: iou阈值

    :return:

    """

    # 1、传入无候选框返回空

    if len(bboxes) == 0:

        return [], []

    # 强转数组

    bboxes = np.array(bboxes)

    score = np.array(confidence_score)

 

    # 取出n个的极坐标点

    x1 = bboxes[:, 0]

    y1 = bboxes[:, 1]

    x2 = bboxes[:, 2]

    y2 = bboxes[:, 3]

 

    # 2、对候选框进行NMS筛选

    # 返回的框坐标和分数

    picked_boxes = []

    picked_score = []

    # 对置信度进行排序, 获取排序后的下标序号, argsort默认从小到大排序

    order = np.argsort(score)

    areas = (x2 - x1) * (y2 - y1)

    while order.size > 0:

        # 将当前置信度最大的框加入返回值列表中

        index = order[-1]

        picked_boxes.append(bboxes[index])

        picked_score.append(confidence_score[index])

 

        # 获取当前置信度最大的候选框与其他任意候选框的相交面积

        x11 = np.maximum(x1[index], x1[order[:-1]])

        y11 = np.maximum(y1[index], y1[order[:-1]])

        x22 = np.minimum(x2[index], x2[order[:-1]])

        y22 = np.minimum(y2[index], y2[order[:-1]])

        w = np.maximum(0.0, x22 - x11)

        h = np.maximum(0.0, y22 - y11)

        intersection = w * h

 

        # 利用相交的面积和两个框自身的面积计算框的交并比, 将交并比大于阈值的框删除

        ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)

        keep_boxes_indics = np.where(ratio < threshold)

        order = order[keep_boxes_indics]

    return picked_boxes, picked_score

 

 

if __name__ == '__main__':

    bounding = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)]

    confidence_score = [0.9, 0.75, 0.8]

    threshold = 0.4

    picked_boxes, picked_score = nms(bounding, confidence_score, threshold)

    print('阈值threshold为:', threshold)

    print('最终bbox列表:', picked_boxes)

    print('最终confidence分数列表:', picked_score)


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

あずにゃん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值