等面积圆柱投影的简单证明

本文提供了一个无需微积分的简单证明,解释了正轴等面积切圆柱投影如何保持地球表面小矩形的面积不变。通过初等几何和极限思想,我们可以理解经线和纬线在投影过程中的变化,从而得知任何形状的区域在投影后面积都将保持等积。这种方法特别适用于理解赤道附近地区地图的变形情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0fa18c1f4b7f0b6b9db754cade62934f.png

在上一篇文章《等面积圆柱投影的证明》中,我们成功证明了【正轴等面积切圆柱投影】确实能够等面积地投影地球,但证明过程中用到了微积分,这可是对许多人来说很头疼的高等数学,所以我们换一种简单的证法,只要熟悉初等几何和一点极限的思想,就能看懂。

正轴等面积切圆柱投影又称“兰勃特等积圆柱投影”。设将圆柱投影面与球面上赤道相切,按等面积条件,用数学方法将经纬线网投影到圆柱面上。经线为等距平行直线,纬线为垂直经线的平行直线,纬线间隔随纬度增加而缩小。角度与长度变形在高纬度地带很显著。适于赤道附近地区的地图。

百度百科

地球表面上任意一块小矩形(宽和高无穷小),等积投影到圆柱上,得到另一个小矩形,和原来相比,这个矩形的宽x和高y分别缩放了多少?首先分析宽,球面矩形的宽是所在纬线φ的半径乘以经度的微元dλ:RCos(φ)dλ;而投影矩形的宽就是是半径乘以经度的微元:Rdλ。下图是地球的俯视图,当dλ趋于0,弧线段就成了直线段。

bf31796ffd690f851858b2f80e91e655.png

投影前后的x的比值就是图中2个半径之比,也就是说,矩形的宽x放大至1/Cos(φ)倍,也就是Sec(φ)倍,宽放大了,矩形的高自然要缩小:在地球的侧视图中,当纬度的微元dφ无穷小,y无穷小,一小段经线投影到圆柱上正好扫过一个直角梯形,梯形的斜边是原始线段y,斜边的对边是投影线段yCos(φ),直角梯形的角度就是φ:

450640fbd9b69fe1514c1930b91f6336.png

因此,小矩形的高被放大至Cos(φ)倍,而宽又缩小了Cos(φ)倍,宽乘以高的面积仍然是xy,不变,所以球面上任何小矩形等面积投影后面积不变,而球面任何不规则图形都可以由若干小矩形组成,因此等面积投影下的世界地图中,每个国家的面积都不会失真。相较于利用积分公式来证明,这种证明方法更简单更直观,下面这张图形象地表明了不同纬度的面积扭曲情况。

e91a8bcd6fa643c34eddfa1b69d2c1df.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xosg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值