赛题描述
一、设在半径为50m,高为10m的圆柱体内有红、蓝、黄三种小球,若一只红球到某只黄球再到一只蓝球的距离小于等于40m,才认为该黄球有可能被这对红、蓝球发现,试问在这个圆柱体的底面至少要放置多少红球、多少蓝球,又它们分别放置在什么地方(设放置后不能移动),才能使放在圆柱体内任何位置(距离底面不足0.1m不予考虑)的黄球都有可能被红球、蓝球发现。
二、如果增加一个条件。分别以过红球或蓝球(可以将它们看成质点)的两条直线为轴,以红球、蓝球为顶点作两个圆锥,圆锥轴截面的顶角均为4度。当黄球(直径2mm)至少有一部分位于上述两个圆锥的交集中(第一问中40m的条件仍旧要满足),就认为红球、蓝球发现了黄球并知道了从红球到黄球中心再到蓝球的距离。当然这时还无法给出黄球的准确定位,但是对同一个黄球,如果存在几对符合上述条件的红球、蓝球,(甚至一个红球、三个蓝球或三个红球、一个蓝球构成的三对)就可以为黄球定位。现在要给固定在圆柱体内任意位置(距离底面不足0.1m仍不予考虑)的黄球定位