今天的专题是矩阵快速幂,其实就是把快速幂算法应用到矩阵中去,把普通的乘法重载成矩阵相乘,从而解决一些实际问题。基本操作如下:
快速幂取模:应用的是取模运算对乘法的可结合性,以及二进制的原理——一个数可以被拆分成若干个2的幂相加之和。具体代码如下:
int qpow(int a, int b, int p) {
int res = 1;
while(b) {//循环到b为0时,所有的因子都已相乘,算法结束
if(b & 1) {//相当于b%2 == 1
res = (res * a) % c;//b为奇数,需补乘一个a
}
b >>= 1;//相当于b /= 2
a = a*a % c;//相当于int k = a*a
}
return res;
}
应用到矩阵中,则定义一个矩阵乘法运算,并将power运算稍作变化。代码如下:
struct mat {
ll a[maxn][maxn];
mat() {//构造方法
memset(a, 0, sizeof(a));
}
};
mat init() {//初始化
mat tt;
for(int i = 0;i < n;i++) {
for(int j = 0;j < n;j++) {
if(i == j)
tt.a[i][j] = 1;
else
tt.a[i][j] = 0;
}
}
return tt;
}
mat mul(mat x, mat y) {//乘法
mat tt;
for(int i = 0;i < n;i++) {
for(int j = 0;j < n;j++) {
tt.a[i][j] = 0;
for(int k = 0;k < n;k++) {
tt.a[i][j] += x.a[i][k] * y.a[k][j];
}
tt.a[i][j] %= mod;
}
}
return tt;
}
mat mul(mat x, mat y) {//乘法
mat tt;
for(int i = 0;i < n;i++) {
for(int j = 0;j < n;j++) {
tt.a[i][j] = 0;
for(int k = 0;k < n;k++) {
tt.a[i][j] += x.a[i][k] * y.a[k][j];
}
tt.a[i][j] %= mod;
}
}
return tt;
}
F(n) = F(n-1) + 2*F(n-2) + n^4.
由于数据范围很大,直接用循环算或用递归算的话必然会爆long long,用大数运算的话时空效率均很低。故利用线性代数中基的思想,采取矩阵相乘的形式将其拆开运算。
具体过程......这个辣鸡博客不让贴图片好气啊...!
因此仅通过对系数矩阵A做n-2次乘幂运算,再与一个已知的向量相乘,得到的向量第一个元素即为F(n)。具体ac代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll mod = 2147493647;
const ll maxn = 2147483647;
int cas;
ll n, a, b;
struct mat {
ll a[7][7];
};
void print(mat ans) {//打印一个矩阵,一直wa,调试时方便
for(int i = 0;i < 7;i++) {
for(int j = 0;j < 7;j++)
printf("%d ", ans.a[i][j]);
printf("\n");
}
return;
}
mat init0() {//初始化为0
mat tt;
for(int i = 0;i < 7;i++)
for(int j = 0;j < 7;j++) tt.a[i][j] = 0;
return tt;
}
mat init1() {//初始化为单位矩阵
mat tt;
for(int i = 0;i < 7;i++)
for(int j = 0;j < 7;j++) tt.a[i][j] = (i==j);
return tt;
}
mat mul(mat x, mat y) {//矩阵 乘法
mat tt;
for(int i = 0;i < 7;i++) {
for(int j = 0;j < 7;j++) {
tt.a[i][j] = 0;
for(int k = 0;k < 7;k++) {
tt.a[i][j] += x.a[i][k] * y.a[k][j];
}
tt.a[i][j] %= mod;
}
}
return tt;
}
mat power(mat tt, ll b) {//快速幂取模
mat res = init1();
while(b) {
if(b & 1) {
res = mul(res, tt);
}
b >>= 1;
tt = mul(tt, tt);
}
return res;
}
int main() {
while(~scanf("%d", &cas)) {
mat coef = init0();
coef.a[0][0] = 1;
coef.a[0][1] = 2;
coef.a[0][2] = 1;
coef.a[0][3] = 4;
coef.a[0][4] = 6;
coef.a[0][5] = 4;
coef.a[0][6] = 1;
coef.a[1][0] = 1;
coef.a[2][2] = 1;
coef.a[2][3] = 4;
coef.a[2][4] = 6;
coef.a[2][5] = 4;
coef.a[2][6] = 1;
coef.a[3][3] = 1;
coef.a[3][4] = 3;
coef.a[3][5] = 3;
coef.a[3][6] = 1;
coef.a[4][4] = 1;
coef.a[4][5] = 2;
coef.a[4][6] = 1;
coef.a[5][5] = 1;
coef.a[5][6] = 1;
coef.a[6][6] = 1;
//print(coef);
while(cas--) {
scanf("%I64d %I64d %I64d", &n, &a, &b);
if(n == 1)
printf("%I64d\n", a);
else if(n == 2)
printf("%I64d\n", b);
else {
mat aa = power(coef, n-2);
mat bb = {b, 0, 0, 0, 0, 0, 0,
a, 0, 0, 0, 0, 0, 0,
16,0, 0, 0, 0, 0, 0,
8, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0};
/*ll ans = 0;
ans = (ans + aa.a[0][0]*b) % mod;
ans = (ans + aa.a[0][1]*a) % mod;
ans = (ans + aa.a[0][2]*16)% mod;
ans = (ans + aa.a[0][3]*8) % mod;
ans = (ans + aa.a[0][4]*4) % mod;
ans = (ans + aa.a[0][5]*2) % mod;
ans = (ans + aa.a[0][6]*1) % mod;*/
mat cc = mul(aa, bb);
//printf("d\n", ans);
printf("%lld\n", cc.a[0][0]);
}
}
}
return 0;
}