系统级封装用陶瓷基板材料研究进展和发展趋势

本文探讨了系统级封装(SIP)技术的重要性及其陶瓷基板材料的优缺点。SIP技术通过混合不同元件实现高密度集成,降低封装体积,提高电性能和兼容性。陶瓷基板作为关键材料,为电子封装提供了支撑和绝缘。随着技术发展,陶瓷基板材料未来将面临更高性能和成本效益的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统级封装技术能够将不同类型的元件通过不同的技术混载于同一封装之内,是实现集成微系统封装的重要技术,在航空航天、生命科学等领域中有广阔的应用前景。陶瓷基板材料是系统级封装技术的基础材料之一。本文介绍了系统级封装技术的概念及其特点,分析几种系统级封装用陶瓷基板材料的优缺点,同时指出了陶瓷基板材料的未来发展趋势。
在这里插入图片描述
随着以电子计算机为核心、集成电路产业为基础的现代信息产业的发展,以及便携式通讯系统对电子产品的迫切需求,电子产业得到了迅猛发展,同时也带动了与之密切相关的电子封装的发展。电子封装技术直接影响着电子器件和集成电路的频率、功耗、复杂性、可靠性和成本等,因此成为电子领域的关键技术。

电子封装是指实现互连和对半导体芯片实现供电、冷却和保护的整个过程。随着电子元器件和电路组件继续向高密度、高速度、低功耗、高频、大功率、宽工作温度范围、抗辐射和高可靠性方向发展,其对电子封装技术提出了更高的要求。

系统级封装(SIP)技术是指将不同类型的元件通过不同的技术混载于同一封装之内。图1给出了某种典型的SIP高密度电子集成模块的横切面,这是在一块核心基板(Core)上根据需要逐层造出各元件连线层,各有源无源元件埋入层,光学系统层等;再在造好的基板上用倒装形式(Flip-Chip)或线焊(Wire-Bonding)方式安装上各个IC和MEMS,也包括不能埋入的无源元件和传感器。根据上述实例SIP具有以下优点:①封装效率高,可在同一封装体内加多个芯片,减

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉图像处理领域的技术。在深度学习机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测匹配、几何变换等功能。此外,MATLAB还支持编程脚本,方便算法的调试优化。 深度学习机器学习在此处的角色主要是改进匹配过程图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性质量。 基于块匹配的全景图像拼接是通过匹配融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习机器学习的先进方法,提升匹配精度图像融合质量。通过对压缩包中的代码数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值