卡尔曼滤波原理及c++实现

卡尔曼滤波原理及c++实现

滤波原理

卡尔曼滤波是一种最优估计算法。

用处:1)利用可测量值估算无法测量的量。2)对有测量噪声的物理量进行估计。常用于制导和导航、计算机视觉等。

状态估计器

在这里插入图片描述

在这里插入图片描述

卡尔曼滤波器与状态观测器的区别

状态观测器是针对确定性系统,卡尔曼滤波器是针对随机系统。

卡尔曼滤波的五个公式

预测公式
x ^ k = F k x k − 1 ^ + B k u k P k ′ = A P k − 1 A T + Q k \hat{x}_k=F_k\hat{x_{k-1}}+B_ku_k\\ P_k'=AP_{k-1}A^T+Q_k\\ x^k=Fkxk1^+BkukPk=APk1AT+Qk
式中, x ^ k \hat x_k x^k为系统状态估计值。 F k F_k Fk为系统状态变换方程得到的状态转移矩阵,也叫预测矩阵。

更新步骤:
K ′ = P k H k T ( H k P k H k T + R k ) − 1 x ^ k ′ = x ^ k + K ′ ( z k ⃗ − H k x ^ k ) P k ′ = P k − K ′ H k P k = ( I − K ′ H k ) P k K'=P_kH_k^T(H_kP_kH_k^T+R_k)^{-1}\\ \hat x_k'=\hat x_k+K'(\vec {z_k}-H_k\hat x_k)\\ P_k'=P_k-K'H_kP_k=(I-K'H_k)P_k K=PkHkT(HkPkHkT+Rk)1x^k=x^k+K(zk Hkx^k)Pk=PkKHkPk=(IKHk)Pk
在这里插入图片描述

扩展卡尔曼滤波器

对于非线性系统,高斯分布的噪声在经过非线性变换后可能不呈高斯分布,导致卡尔曼滤波不收敛。因此,需要用到扩展卡尔曼滤波。

在这里插入图片描述

C++代码实现

#include <vector>
#include<iostream>
#include <math.h>
#include <cstdlib>
#include <iomanip>

#define N 50
using namespace std;
class Kalman
{
public:
    Kalman();
    /**
     * @brief setIniVal 设置初始值
     * @param dval 待测数据初始值
     * @param dQ   系统噪声方差(有默认值)
     * @param dR   观测噪声方差(有默认值)
     */
    void setIniVal(float dval, float dQ = 0.01, float dR = 0.25);

    /**
     * @brief getData 获取滤波数据
     * @param vecReal 真实值
     * @param vecObserver 观测值
     * @param vecFilter 滤波后的值
     */
    void getData(vector<float>& vecReal,
        vector<float>& vecObserver,
        vector<float>& vecFilter);
    // 显示滤波效果
    void displayError();

private:
    // 产生-1与1之间的随机数
    float frand();


private:
    float m_dQ;       // 系统噪声方差
    float m_dR;       // 观测噪声方差
    vector<float> m_vecSysNoise;   // 系统噪声
    vector<float> m_vecObserNoise; // 观测噪声
    vector<float> m_vecReal;   // 真实值
    vector<float> m_vecObser;  // 观测值
    vector<float> m_vecKF;     // 滤波值
    vector<float> m_vecCov;    // 协方差

};





Kalman::Kalman()//构造函数
{
    m_dQ = 0.0;
    m_dR = 0.0;
    // 初始化容器大小
    m_vecSysNoise.resize(N);
    m_vecObserNoise.resize(N);
    m_vecReal.resize(N);
    m_vecObser.resize(N);
    m_vecKF.resize(N);
    m_vecCov.resize(N);
}

void Kalman::setIniVal(float dval, float dQ, float dR)
{
    m_dQ = dQ;
    m_dR = dR;
    m_vecReal[0] = dval;
    m_vecObser[0] = dval;
    m_vecKF[0] = dval;

    // 初始化系统噪声
    for (int i = 0; i < N; ++i)
    {
        m_vecSysNoise[i] = sqrt(m_dQ) * frand();
    }

    // 初始化观测噪声
    for (int i = 0; i < N; ++i)
    {
        m_vecObserNoise[i] = sqrt(m_dR) * frand();
    }

    // 协方差赋初值
    m_vecCov[1] = 0.01;
}

void Kalman::getData(vector<float>& vecReal,
    vector<float>& vecObserver,
    vector<float>& vecFilter)
{
    float dXPre = 0.0;   // 一步预测值
    float dPpre = 0.0;   // 协方差一步预测
    float Kg = 0.0;      // 滤波增益

    for (int i = 1; i < N; ++i)
    {
        m_vecReal[i] = m_vecReal[i - 1] + m_vecSysNoise[i - 1]; // 真实温度波动变化
        m_vecObser[i] = m_vecReal[i] + m_vecObserNoise[i];  // 观测值波动变化
        // 以下五步为Kalman核心步骤
        dXPre = m_vecKF[i - 1]; // 一步预测
        dPpre = m_vecCov[i - 1] + m_dQ;  // 协方差一步预测
        Kg = dPpre / (dPpre + m_dR);   // 计算增益
        m_vecKF[i] = dXPre + Kg * (m_vecObser[i] - dXPre); // 状态更新
        m_vecCov[i] = (1 - Kg) * dPpre;  // 协方差更新
    }
    // 输出结果
    vecReal = m_vecReal;
    vecObserver = m_vecObser;
    vecFilter = m_vecKF;
    return;
}

void Kalman::displayError()
{
    float ObError = 0.0;   // 观测误差
    float KfError = 0.0;   // 卡尔曼滤波误差

    for (int i = 0; i < N; ++i)
    {
        cout << " Real Value " << setprecision(5) << m_vecReal[i];
        cout << " Observer Value " << setprecision(5) << m_vecObser[i];
        cout << " Error " << fabs(m_vecObser[i] - m_vecReal[i]);
        cout << " KF Value " << setprecision(5) << m_vecKF[i];
        cout << " Error " << fabs(m_vecKF[i] - m_vecReal[i]) << "\n";
        ObError += fabs(m_vecReal[i] - m_vecObser[i]);
        KfError += fabs(m_vecReal[i] - m_vecKF[i]);
    }

    cout << "\n" << " Observer Error " << setprecision(5) << ObError << "\n";
    cout << " KalmanFilter Error " << setprecision(5) << KfError;
}



float Kalman::frand()
{
    static int seed = 0;
    int i = time(0) % 100000;
    seed += i;
    srand(seed);
    float a = 2 * ((rand() / (float)RAND_MAX) - 0.5);//随机噪声
    return a;
}

//主函数调用
int main()
{

    Kalman kal;
    vector<float> vecReal;
    vector<float> vecOb;
    vector<float> vecKF;

    kal.setIniVal(30);
    kal.getData(vecReal, vecOb, vecKF);
    kal.displayError();
    return 0;
}

Kalman kal;
vector<float> vecReal;
vector<float> vecOb;
vector<float> vecKF;

kal.setIniVal(30);
kal.getData(vecReal, vecOb, vecKF);
kal.displayError();
return 0;

}


  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卡尔曼滤波算法是一种用于估计系统状态的优化算法,它通过融合传感器测量值和系统模型来提供更准确的状态估计。以下是卡尔曼滤波算法C++实现的基本步骤: 1. 初始化:定义系统模型和初始状态估计,包括状态向量、状态转移矩阵、观测矩阵、过程噪声协方差矩阵和测量噪声协方差矩阵。 2. 预测步骤:根据系统模型和上一时刻的状态估计,预测当前时刻的状态和协方差。 3. 更新步骤:根据测量值和预测的状态估计,计算卡尔曼增益和更新后的状态估计。 4. 重复预测和更新步骤,直到达到所需的状态估计精度或满足停止条件。 下面是一个简单的卡尔曼滤波算法C++实现示例: ```cpp #include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { // 定义系统模型和初始状态估计 MatrixXd A(2, 2); // 状态转移矩阵 MatrixXd H(1, 2); // 观测矩阵 MatrixXd Q(2, 2); // 过程噪声协方差矩阵 MatrixXd R(1, 1); // 测量噪声协方差矩阵 MatrixXd P(2, 2); // 状态估计协方差矩阵 VectorXd x(2); // 状态估计向量 // 初始化 A << 1, 1, 0, 1; H << 1, 0; Q << 0.1, 0, 0, 0.1; R << 1; P << 1, 0, 0, 1; x << 0, 0; // 测量值 double z = 1; // 卡尔曼滤波算法 for (int i = 0; i < 100; ++i) { // 预测步骤 x = A * x; P = A * P * A.transpose() + Q; // 更新步骤 double y = z - H * x; MatrixXd S = H * P * H.transpose() + R; MatrixXd K = P * H.transpose() * S.inverse(); x = x + K * y; P = (MatrixXd::Identity(2, 2) - K * H) * P; std::cout << "Estimated state: " << x << std::endl; } return 0; } ``` 这是一个简单的一维卡尔曼滤波算法实现,通过不断迭代预测和更新步骤,可以得到状态的估计值。你可以根据实际需求进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值