diffusion convolutional recurrent neural network: data-driven traffic forecasting(NIPS2018)

diffusion convolutional recurrent neural network: data-driven traffic forecasting(NIPS2018)

摘要:时空预测在神经科学、气候和交通等领域有着广泛的应用。交通预测就是这种学习任务的典型例子。这项任务具有挑战性,因为(1)道路网络的复杂空间依赖性,(2)随道路条件变化的非线性时间动力学,(3)长期预测的固有难度。为了应对这些挑战,我们建议将交通流建模为有向图上的扩散过程,并引入扩散卷积回归神经网络(DCRNN),这是一种用于交通预测的深度学习框架,融合了交通流的空间和时间依赖性。具体来说,DCRNN利用双向随机游走在图上捕捉空间相关性,利用编码器-解码器结构与定时采样捕捉时间相关性。我们在两个真实世界的大型道路网络交通数据集上评估了该框架,并观察到该框架比最先进的基线持续改善了12% - 15%

背景:这项任务的挑战性主要在于复杂的时空相关性和长期预测的固有难度

方案:

在这项工作中,我们使用一个有向图来表示交通传感器之间的成对空间相关性,该图的节点是传感器,边缘权值表示由道路网络距离测量的传感器对之间的接近程度。我们将交通流动力学建模为一个扩散过程,并提出扩散卷积运算来捕捉空间相关性。我们进一步提出了扩散卷积递归神经网络(DCRNN),它集成了扩散卷积、序列到序列结构和预定采样技术。在现实世界的交通数据集上进行评估时,DCRNN的表现始终远远优于最先进的交通预测基线

METHODOLOGY

问题:

框架

我们通过将交通流与扩散过程相关联来模拟空间依赖性,这明确地捕捉了交通动力学的随机性质。这个扩散过程的特征是G上的随机游走

Diffusion Convolution

Diffusion Convolutional Layer

通过空间和时间建模,我们建立了扩散卷积回归神经网络(DCRNN)。DCRNN的模型架构如图2所示。整个网络通过使用时间反向传播来最大化生成目标未来时间序列的可能性来训练。DCRNN能够捕获时间序列之间的时空相关性,可以应用于各种时空预测问题

创新点:使用图网络 实现交通流量预测

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值