learning to remember patterns: pattern matching memory networks for traffic forecasting

learning to remember patterns: pattern matching memory networks for traffic forecasting

由于复杂的路网和道路上各种事件引起的速度突变,交通预测是一个具有挑战性的问题。一些模型已经被提出来解决这一具有挑战性的问题,重点是学习道路的时空相关性。在这项工作中,我们提出了一个新的视角,将预测问题转化为模式匹配任务假设大交通数据可以表示为一组模式。为了评估这种新观点的有效性,我们设计了一种新的交通预测模型,称为模式匹配记忆网络(PM-MemNet),它学习将输入数据与具有键值记忆结构的代表性模式进行匹配我们首先提取和聚类代表性的流量模式,作为内存中的键。然后,通过匹配提取的关键字和输入,PM-MemNet从内存中获取有关现有交通模式的必要信息,并使用它进行预测。为了建模交通的时空相关性,我们提出了一种新的记忆体系结构,GCMem,它融合了注意力和图卷积。实验结果表明,PM-MemNet比最先进的模型,如Graph WaveNet,具有更高的准确性和更高的响应性。我们还提出了一个定性分析,描述PM-MemNet如何工作,并在道路速度快速变化时实现更高的准确性

总结:文中的新颖在于 提出了一种的模式进行交通预测,即一种模式匹配方法。首先利用历史交通数据抽取不同路段的模式,然后将输入的数据进行模式匹配,类似于对Key-value方式的查询。1)这种匹配模式在预测中,如果未来存在新的模式,这种预测显然失效。2)文中提出将GNN和attention结合起来,这种深度学习结构,没有什么很新颖的地方,但是在GCMen结构中,利用时序矩阵,便于计算不同矩阵下的attention得分。

方案:在这项工作中,我们的目标是设计一种新的方法来建模道路的时空相关性,并提高预测性能。为了实现这一目标,我们首先从历史交通数据中提取具有代表性的交通模式,因为我们发现道路之间存在着相似的交通模式,对于具有相似时空特征的道路,可以归纳出一组交通模式(类似的时序数据可以归纳一些典型模式)通过具有代表性的模式,我们将传统的预测问题转化为模式匹配任务,找出与给定时空特征最匹配的模式,以预测未来交通状况。

我们设计了称为GCMem的图卷积记忆网络,以管理时空视角下的代表性模式。最后,我们设计了PM-MemNet,利用GCMem的代表模式进行交通预测。memnet由一个编码器和一个解码器组成。编码器由时间嵌入和堆叠的GCMem组成,通过记忆产生有意义的表示,解码器由一个带GCMem的门控循环单元(GRU)组成。我们将PM-MemNet与现有的最先进模型进行比较,发现PM-MemNet优于现有模型。我们还提出了一个定性分析,在其中,我们进一步研究了PM-MemNet在管理交通模式方面的优势,在这种模式中,需要模型对速度突然变化的高响应性,以进行准确的预

预测问题:

NEURAL MEMORY ARCHITECTURE

GCMem集成了多层记忆和注意机制(Madotto et al., 2018)和图卷积(Bruna et al., 2014)。通过使用GCMem,模型既可以捕获模式级的注意力,又可以通过GCNs实现图感知信息共享

我们使用邻接矩阵、可学习的自适应矩阵和gcn的注意分数。通过保持模式级注意,该模型利用了模式级信息共享和相邻权重绑定(Madotto等人,2018)。结果表明,相邻记忆细胞在考虑图结构时能够有效地保留注意机制。

encode-decoder跳过

实验结果:

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值