Multi-view Unsupervised Graph Representation Learning

本文介绍了一种新的无监督图学习方法,通过自适应数据增强和多视角对比学习,解决传统对比学习忽视特征空间信息的问题。方法利用深度图模型生成多视角嵌入特征,并设计对比损失探索拓扑与特征图互补。模型实现端到端,实验结果证明其有效性。
摘要由CSDN通过智能技术生成

数据增强和对比损失是对比学习的关键组成部分。本文设计了一种新的多视图无监督图表示学习方法,包括自适应数据增强和多视图对比学习,以解决对比学习忽略特征空间信息的问题。具体而言,自适应数据增强首先从特征空间构建特征图,然后在原始表示和拓扑图上设计深度图学习模型来更新特征图和新表示。因此,自适应数据增强输出多视角信息,将其输入到两个GCNs中以生成多视角嵌入特征。在多视图嵌入特征上进一步设计两种对比损失,以探索拓扑图和特征图之间的互补信息。此外,自适应数据增强和对比学习被嵌入到一个统一的框架中,形成一个端到端的模型。实验结果验证了我们所提出的方法的有效性,与最先进的方法相比

阅读者总结:这篇论文是利用了图生成的过程,学习图嵌入特征,然后再分组重构图。在方法上不算很新颖。主要一点是利用了对比学习的方式,将整个图结构重构出来

 

 本文提出一种多视图CL-UGRL方法,通过两个关键部分来解决上述问题,即自适应数据增强和多视图对比学习。我们的自适应数据增强首先从特征空间生成特征图,然后设计一个深度图学习模型,在原始表示的基础上联合更新特征图和新的表示。进一步将特征和拓扑图与原始和新表示相结合以形成多视图信息,将其馈送到两个GCNs中以生成多视图嵌入特征。

在多视图嵌入特征上设计两种对比损失,以探索拓扑与特征图之间的互补信息。与独立于对比学习的传统数据增强不同,本文将自适应数据增强和多视角对比学习嵌入到一个框架中,形成一个端到端的模型,共同进行数据增强和多视角对比学习。因此,数据增强由调整后的多视图对比学习迭代更新,反之亦然。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值