AAAI 2022 Simple Unsupervised Graph Representation Learning 成电

本文将 MLP 引入到对比学习, 由于2021年mlp能用到scalable graph learning,因此 MLP学到X的embedding能够更好的解决 可扩展性问题, DGI GMI GCA MVGRL GRACE GIC等方法都是扩展性较差,且latent dim 一般都取512, 这篇文章算是 novel的一篇对比学习,1:不是通过各种顶会上的negative sampling方法来获得负样本 ; 2:不是通过鉴别器来打分,而是通过一个triplet loss 辅助 upper bond来控制正负样本距离

本文框架:

对于基于MI的无监督表征学习方法较全

方法:

1:通过MLP抽取不含有结构信息的 属性特征, shuffle后获得负样本,这个过程和DGI一样,简单高效的。simple yet effective。 由于MLP不能抽取图拓扑,故要考虑结构信息 在后续的过程中

2:

2.1采用GCN encoder 来抽取结构化信息,和 MLP共享参数W,作者说 to reduce time cost

 

 2.2  sample 节点的邻居信息,这步很implicit, 因为gcn已经抽取了neigbor,作者说 gcn关注的是全部邻居,而这里sample是关注部分邻居。 全局邻居更加general ,局部邻居specific

到目前为止:获得了MLP的特征及其负采样后的特征,两个带有拓扑信息的特征(全局+局部)

接下来就是 正负样本对 之间的push pull, 之前很多方法都是 基于DGI 训练判别器打分, 这个扩展性很差,因为一般都是一个bilinear,来进行打分,节点多,维度大,参数会很大,本文是通过计算distance,push pull。来减小类内方差,增大类间方差。

上面的triplet loss 在两个正样本的 specification。拉近gcn和mlp正,拉近neighbor 和mlp正,反之。

 这两个损失是互补的,由于gcn和neighbor不同,会出现两种情况,h和h+大于h h+hat,反之,作者claim,出现一种情况,8式子无用,9式子起作用, 若9式无用,8式起作用,都会增大类间。

 triplet loss(7式)衡量正样本对距离- 负样本对距离,尽可能让他们差值大,可以看式6,正样本和h之间的距离 应该小于 负样本和h之间的距离,alpha是一个margin,让正样本加了这个margin还是小于负的距离,i.e.本文作者说的 safe distance,至少两者都该这么远,不让出现 正负样本距离差 过于小。这个margin距离在传统机器学习或者image中较多,对比损失 panshirui Phi. S. Y组21年也有类似的做法; 式子7整体就是让整体差值+alpha 小于0,越小越好,通过max{,0},使得若是负数=0,若是正数,则表明整体差值+alpha大于0了,损失就出现了,------ 就是让两种样本对之间的差值至少是alpha。但是7式子也存在问题,如果负样本对之间的距离没有被约束,很大,那么会出现正样本对和h(anchor)之间本来距离很大,减去一个也很大的 负样本对距离, 也会使得损失大于0 出现。 现在重新看 式7 ,这个是保证 类间方差大, 但由于上述情况出现,类内方差也会出现很大的情况(正样本对本身距离就很大),因此需要增加约束。

        

从式6出发,式6式让两者保持alpha的安全距离,来保证类间方差大,为了不让类内方差大,提出了alpha+belta这个上界,上界保证了负样本对距离不会过于大,那么 负样本和h的距离是有限的 既要大于正样本对+alpha,又要小于正样本对+alpha+belta,因此使得正样本和h的距离也是有限的,不至于特征大,使得类内方差很大,式11 目的是 减小类内方差,即10式的 第二个term和第三term 推出的。

按照6式角度,这个11式会使得 正负样本对之间的距离至少保持alpha+belta(是吗。。。)。 10式子直观的感受就是 负样本对距离大于 正样本对,但不会 过于大。

作者说 只是对gcn得到的正表征进行了 上界约束,保证了类内方差小,而不是像89都去保证类间方差,作者claim:因为邻居信息表征每个都很相似,采用他们不会提升效果, 感觉是经验上的结论。

损失函数,Ls:gcn的类间方差 Ln:neighbor的采样类间方差 ;Lu:是gcn的类内方差

除了这两个超参数,还有alpha+belta。但是本文没有说 最好的时候 超参数是多少,,,,可能是每个数据集都不一样吧。 

 实验:

对于大数据集,对比的MI方法采用了minibacth 这里是graphsaint采样

实验效果很棒,精度时间等都很强 且做了三个ogb

 消融分析,表中看,上界损失帮助很大

参数敏感性,时间分析

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值