AI配音(声音克隆)

Fish Audio: Free Generative AI Text To Speech & Voice Cloning

【【AI配音】终于找到免费 & 小白友好的声音克隆软件了!真人相似度98%!】https://www.bilibili.com/video/BV1MwbFeCE2X?vd_source=3cc3c07b09206097d0d8b0aefdf07958

我终于找到总这3款免费 & 小白友好的声音克隆软件了!真人相似度居然98%!
1. Fish:https://fish.audio/
2.剪映:https://www.capcut.cn/
3.ChatTTS音色源:https://modelscope.cn/studios/ttwwwaa/ChatTTS_Speaker/summary

### 声音克隆技术概述 声音克隆技术利用深度学习算法来分析并模仿特定个体的声音特性,从而能够生成听起来像该个体说出的新语音片段。这种技术不仅限于简单的文本转语音(TTS),还可以用于改变说话者的声线风格。 #### Clone-voice工具介绍 Clone-voice是一个开源项目,旨在简化这一过程[^1]。它允许用户输入一段约30秒的目标人物讲话录音作为样本数据,之后便能快速而精准地复制出相似度极高的新音频文件[^2]。此应用程序特别之处在于其多语言支持能力——覆盖了超过十六种不同的自然语言环境,使得跨国界交流变得更加便捷高效。 #### 技术原理与实现方式 为了达到更逼真且可控的效果,开发者们采用了先进的神经网络架构如So-VITS-SVC来进行建模训练。具体来说,在实际操作过程中会先获取原始发音者以及期望转变后的目标发声模式对应的梅尔频率倒谱系数(MFCCs)[^3];接着把这些特征向量送入预先经过大量真实世界对话素材调优过的模型内部完成映射关系的学习;最后再依据所得参数重建波形输出最终成品。 以下是使用Python和So-VITS-SVC模型的一个基本代码框架: ```python import torch from so_vits_svc import SoVitSVCModel, preprocess_wav def clone_voice(source_audio_path, target_speaker_id): model = SoVitSVCModel.from_pretrained('path_to_model') source_mel = preprocess_wav(source_audio_path) converted_mel = model.convert(source_mel, target_speaker_id) output_waveform = model.vocoder.infer(converted_mel) return output_waveform.cpu().numpy() ``` 这段脚本展示了如何加载预训练好的So-VITS-SVC模型,并指定要转换的源音频路径及目的说话人ID。通过`preprocess_wav()`函数准备输入数据后,调用`convert()`方法执行核心变换逻辑,最后借助内置解码器恢复成可播放的形式返回给调用方。 #### 应用场景与发展前景 除了满足日常生活中趣味性的需求之外,此类软件还被广泛应用到了广播剧配音、虚拟主播直播等多个领域当中去。由于具备高度定制化的特点,因此无论是追求极致还原还是创意改编都能找到合适的解决方案[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值